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Abstract

Roughly speaking a parser is a function, associated with a grammar, which
takes as input a string of symbols and produces as output the derivations of that
string if it is in the language generated by the grammar and an error message
otherwise. In this report we undertake a theoretical study of a general pars-
ing technique based on the standard linear LR parsing algorithm. This general
technique was described and given a practical implementation by Tomita and
a corrected version was given by Farshi. We shall show that the problem with
Tomita’s original algorithm lies mainly (but not entirely exclusively) with gram-
mars that contain hidden right recursion. The issue is to ensure that when a
reduction using a right nullable rule is applied, all the possible reductions are
explored. We address this by treating items of the form A = o« - 3, where
=€, as reductions, allowing the reduction to be performed when only « has be
recognised. We give a modification of Tomita’s original algorithm, based on a
modification of the underlying parse table, which we prove is correct. It is also
more efficient than Farshi’s modification. We have implemented a parser gener-
ator which generates parsers based both on Tomita’s original algorithm and on
our modification, and we give statistics on the behaviours of both types of parser.

This document is (© Elizabeth Scott, Adrian Johnstone and Sadaf Hus-
sain 2000.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.
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Tomita-Style Generalised LR Parsers

Roughly speaking a parser is a function, associated with a grammar, which
takes as input a string of symbols and produces as output the derivations of that
string if it is in the language generated by the grammar and an error message
otherwise. It is sometimes claimed that parsing is ‘done’. Such claims are some-
what surprising, particularly when we recall that it is still not known whether
all context free grammars, or even all context free languages, admit a linear time
parser. It is certainly the case that parsing is well enough understood for efficient
parsers to be easily generated in many cases, but being able to build a bridge
which we are fairly sure will not fall down is not the same thing has having a fully
understood mathematical theory of forces. For example, the grammars normally
used for C do not fall into the class of grammars for which there is a standard
linear time parser. In this case the problem is with the ambiguity of certain con-
structs such as if _then_else. There are practical solutions to these problems,
in the case of the if then else ambiguity one of the many different possible
derivations is selected (the one which corresponds to the ‘longest match’). Such
solutions provide parsers which behave in a way which is satisfactory for the end
users, but the ‘parsers’ do not produce all derivations for a given input string and
hence are theoretically incomplete. Furthermore, it is relatively easy to construct
a grammar which does not have the properties required for the known linear-
parser generation techniques to be applied (i.e. a non-LR grammar), and it is
often difficult to transform such a grammar into an appropriate form.

A properly understood underlying mathematical model which allows reason-
ing about the behaviour of objects and which feeds into good engineering practice
is the basis of any scientific academic subject. The above observations highlight
two areas where the underlying theory of parser generation needs to be extended.
We need a better understanding of the properties which make a grammar LR(1),
in order to allow such grammars to be effectively constructed by non-specialists,
and we need further study of techniques for constructing parsers for non-LR(1)
grammars. The latter is particularly important in cases where we are not free to
change the language to make it more amenable to parsing, for example in natural
language parsing.

In this report we undertake a theoretical study of a general parsing technique
based on the standard linear LR parsing algorithm. This general technique was
described and given a practical implementation by Tomita [Tom86]. However,
there was no mathematical analysis of the algorithm and it was subsequently
found to be non-terminating in certain cases. Farshi [NF91] produced a modifi-
cation of Tomita’s algorithm which appears to correct the problem, but Farshi
himself states: “Although no formal proof was provided here but it is believed
that the modified algorithm is a precompiled equivalent of Earley’s algorithm
with respect to its coverage.”

There is another algorithm given by Nederhof and Sarbo [NS96] which ad-
dresses the problem with Tomita’s algorithm by essentially carrying out € removal
‘on the fly’. The paper includes a proof of the correctness of the algorithm. How-
ever, the focus of the paper is on the problem of hidden left recursion, which
Nederhof and Sarbo claim is also a problem for Nederhof’s cancellation parsing
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algorithm. Since we shall show that the problem with Tomita’s algorithm can
be successfully addressed by considering right nullable production rules, we shall
not discuss Nederhof and Sarbo’s algorithm further in this report.

Tomita constructed his algorithm in stages. The first stage algorithm was
applied only to e-free grammars. This was then extended to general context-free
grammars, but the extension was later found to fail to terminate on grammars
with hidden left recursion. We shall study Tomita’s first stage algorithm and
explain the problem with applying it to grammars which contain e-rules. As a
result of this analysis we shall give a modification, based on a modification of the
underlying parse table, which we can prove is correct. It is also more efficient than
Farshi’s modification. We shall show that the problem with Tomita’s first stage
algorithm lies mainly (but not entirely exclusively) with grammars that contain
hidden right recursion. The issue is to ensure that when a reduction using a right
nullable rule is applied, all the possible reductions are explored. We address this
by treating items of the form A 1= « -3, where §=>¢, as reductions, allowing the
reduction to be performed when only « has been recognised.

We have implemented a parser generator which generates parsers based both
on Tomita’s first stage algorithm and on our modification, and at the end of this
report we shall give statistics on the behaviours of both types of parser.

In a later paper we shall discuss a different approach to constructing gen-
eralised parsers in which the regular parts of the language are parsed using an
efficient finite state automaton, and the self-embedding is handled using recursive
calls to sub-automata. Again we shall prove that the parsers constructed using
this algorithm are correct.

1 Background

LR parsers use a grammar-related deterministic finite state automaton (DFA)
and a stack to parse an input string. The DFA is traversed as input symbols
are recognised, and the path taken during this traversal is recorded on the stack.
When an accepting state in the DFA is reached, the path must be re-traced up
to a certain point and a new route taken (this is performing a ‘reduction’). This
is implemented by popping the appropriate number of states off the stack.

It is possible for the DFA to present more than one choice of action to the
parser, an accepting state may also have a transition on the next input symbol
(a shift/reduce conflict), and there may be more than one path re-tracing which
is possible (a reduce/reduce conflict). In such cases the standard LR parsing
algorithm is inadequate; it does not specify how to make a choice of action when
several possibilities exist.

Lang [Lan74] proposed a method for exploring all of the possible actions on a
given input string, and outputting a grammar which generates all of the possible
derivations of that string. In this report we describe implementations, based on
this approach, which have been given by Tomita [Tom86] and Farshi [NF91], and
we give another implementation which is essentially the same as Tomita’s but
which is based on a modification of the underlying DFA, obtained by extending
the set of states which are accepting states. In this section we shall discuss the
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underlying LR(1) parsing technique in a way which will allow us to reason about
Tomita’s algorithm.

Traversing a DFA using a given input string

In the following discussion we shall use LR(1) DFAs, but the discussion applies
equally well to LR(0), SLR(1) and LALR(1) DFAs.

The basic idea is to maintain a list of DFA states which can be reached by
starting at the start state and traversing the DFA using the input symbols seen
so far. When an input symbol, @ say, is read any state which can be reached
from a state in the current list along a transition labelled «a is added to the new
list of current states. When an accepting state (a state which contains an item
(A ::= a-, b) say where b is the next input symbol) is reached the path labelled «
which was taken to reach that state is re-traced and the state which can then be
reached along a transition labelled A is also added to the list of current states.
This process is very similar to the ‘subset construction’ which is used to construct
a DFA from an NFA: at any point in the procedure we have a current set X of
states, we make a new set Xa consisting of those states which can be reached
from a state in X along a transition labelled «, and then we form the e-closure of
Xa,i.e. we construct the smallest set Y with the property that Xa C Y and if a
state n can be reached from a state m in Y along an e-transition then n is in Y.

The main difference between the DFA-based general parser and the NFA
traverser which forms the basis of the subset construction is that in the latter
the e-closure contains all the states which can be reached via e-transitions, while
the reduction-closure in the former can only contain states which can be reached
by re-tracing a path taken (we refer to these as input related reduction-closures).
The following example illustrates this point.

S u= 8
S = Tal|dTad
T == a

8

If we construct the reduction-closures which arise from input ead we get:

start position: {0}, reduction-closure = {0} = So.

input a: (states reachable from Sg) = {1}, reduction-closure = {1,4,6} = 5.
input a: (states reachable from S;) = {5, 7}, reduction-closure = {3,5,7} = S5.
input d: (states reachable from S3) = {8}, reduction-closure = {3,8} = Ss.
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The traverser reaches the final accept state, state 3, and has consumed all the
input, thus it will erroneously accept the input aad. The problem is that, in the
second step of the traversal, it is possible to get to state 6 from state 1 via a valid
reduction but it is not possible to get there by re-tracing a path which has been
taken in the traversal at this stage. Thus we need to restrict reductions and use
only the input related reduction closures.

Because we can only perform reductions down paths which have been tra-
versed with the current input it is necessary to retain these paths. This is the
role of the stack in a traditional LR parser. In this report we shall consider
variations on a method devised by Tomita for recording these paths and com-
puting the states which can be generated from reductions. In a future paper we
shall consider an alternative approach, based on the work of Aycock and Hor-
spool [AH99], in which the DFA is modified so that all reductions from a given
state and next input symbol are valid. It is then no longer necessary to retain the
information about what paths were taken to a given state. In fact the reductions
can be pre-calculated and included in the DFA when it is initially constructed.

Tomita’s method for recording a possibly multipath traversal of a DFA is
based on a Graph Structured Stack, which replaces the stack in a traditional LR
parser and allows the appropriate input related reduction-closures to be efficiently
calculated. The method by which Tomita chose to identify the reductions that
needed to be carried out meant that, if the grammar contained right nullable
rules, his basic algorithm did not always correctly identify all reductions that
needed to be performed. Thus he applied this algorithm only to e-free grammars.
Tomita modified his method to allow grammars which contain €, but this modifi-
cation results in an algorithm which fails to terminate on grammars which contain
hidden left recursion. Farshi corrected this problem by returning to Tomita’s ba-
sic algorithm and augmenting it with a search which ensured that all reductions
were identified even in the case of hidden right recursion. However, the GSS
and shared derivation tree produced by Tomita’s method are more efficient, in
general, than those produced by Farshi’s method. Rekers [Rek92] uses Farshi’s
algorithm for generating and traversing the GSS but constructs more efficient
shared parse trees. In the next section we shall define and discuss the GSS which
forms the basis of all the algorithms discussed in this report. In Sections 3 and
4 we shall discuss Tomita’s algorithms and in Section 5 we shall discuss Farshi’s
modification.
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2 The graph structured stack (GSS)

Tomita’s algorithm takes an input string, ajas...a,, and uses it to traverse a
DFA, constructing a Graph Structured Stack (GSS) as it proceeds. This construc-
tion is carried out in a series of steps, an initial step and then one step for each
symbol in the input string.

A GSS consists of state nodes, which are labelled with states of the DFA,
and a set of symbol nodes, which are labelled with a grammar symbol. The GSS
associated with a specific context free grammar and input string a4 ...a, say.
The state nodes are grouped together into disjoint sets, an initial set, Uy, and
one set, U;, for each element a; of the input string. In the language used in the
introduction, Uy is the input related reduction-closure of the start state of the
DFA, and for 1 < ¢ < n we have that U; is the input related reduction-closure
of U;_ya;, the set of all states which can be reached from a state in U;_; along a
transition labelled «;.

We say that a node is at level ¢ if it is in U;, and that v € U; has a valid
reduction if the DFA state, h, which labels v contains an item of the form (A ::=
a-,a;41). Conversely, we say that a reduction via the rule A = « is valid for
a state mode v which is at level ¢+ and has label h, if the DFA state h contains
the item (A = a-,a;41). In other words, valid reductions are reductions which
can be applied when the input ay...a; has been read and the lookahead input
symbol is a;41.

For example, given the grammar and DFA,

S =S
S = Ab| abb
A = «a

corresponding to the stack activity
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Us
2 4 6
[]1 [ - - — — — = ]
r-—-—=—-=—°—7 1 b b S
| |
Uo I I R 3 5 0
r— — a A a A
L LO_J J| — read a— 0 0 — read b— 0 0
perform reduction perform reduction

This is obtained by beginning in state 0 with a stack which just contains 0. The
input symbol « is read, and shifted on to the stack along with the next state, 3. At
this point there are two possible actions, a shift to state 2 and a reduction. The
stack is split and both actions are applied. The reduction is applied first, creating
a new stack by popping off the top two symbols and pushing on A followed by
state 5. In the GSS the base state, 0, of the two stacks is shared. Now the symbol
b is read and shifted on to the top of both stacks. There is no further action that
can be performed from state 2, but from state 4 there is a valid reduction which
results in a third stack splitting. The state 6 is the accepting state of the DFA|
so the input is accepted.

We now give some general properties of a GSS, and then we shall describe the
general GSS construction, without describing the ‘book-keeping’ (the identifica-
tion and storage of pending reductions) that a full algorithm needs to do in order
to be able to carry out the construction. The book-keeping will be discussed
when we consider the various parsing algorithms.

Notation and properties of the GSS

The GSS is a connected directed bipartite graph on the set of state nodes and

the set of symbol nodes, i.e. all successors and predecessors of a symbol node are

state nodes and all successors and predecessors of a state node are symbol nodes.
The GSS constructed from input a; ...a, contains a subgraph of the form

(—faf—)

if there is a node in U,_q labelled %k, and node in U; labelled h, and a transition
labelled «¢; from % to h in the DFA.

a;

(This corresponds to shifting the symbol «; in the parser.) The GSS contains a

subgraph of the form
u v

where u € U; and v € U;, if and only if there is a subgraph in the GSS of the
form
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u w
O~ E—O

where u € U;, w € U;, A i= 2 ...%,, is a grammar rule, and there is a transition
from k to h labelled A in the DFA. (This corresponds to forming an input related
reduction from state [.)

DFA GSS

B:::7;~Acr,b

A= 21 Tm, g1

We say that the node v is reduction related to the node w via a path of length
2m and a symbol node labelled A.

A set of state nodes, U, in the GSS is input related reduction-closed if for each
node, w say, with label [ which is at level ¢ and for each valid reduction in w, i.e.
for each item (A = 21...2p-,a;41) in [, if k is the label of a state node which
is reachable in the GSS from w along a path of length 2m then there is a node
in U which is at level ¢ and has label &, where h is the state in the DFA which
can be reached from k along the transition labelled A. In other words, if for all
valid reductions A ::= 1 ...x,, in a node in w € U there is a node v in U which
is reduction related to w via a path of length 2m and a symbol node labelled A.
The sets U; in the GSS are all input related reduction-closed.

When the GSS has been constructed the final set, U,,, of state nodes is exam-
ined. The input string is in the language if and only if U, contains the accepting
state of the DFA.

Note: Because there is only a path of length 2 in the GSS from a state node
with label & to a state node with label k if there is a transition from % to h in
the DFA,

DFA sS

all the symbol nodes which are successors of a given state node in the GSS
will have the same label. This label will be the (unique) symbol which labels
transitions to h in the DFA.

Constructing a GSS for input a;...a,

We shall now describe the basic construction of a GSS for a given DFA and input
string. (Tomita’s basic algorithm does not deal with e-productions and for the
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moment we shall assume that our grammars are e-free. We shall consider general
grammars later.) We illustrate the process using the following example:

S =S

S = Tb

T == Tb|DT |ablalb
D .

input: abb

We begin in the start state, state 0, of the DFA and construct a state node, vp,
labelled 0 in the GSS. If the grammar is e-free then there will be no reductions in
state 0 thus Uy = {vp} and we read the first input symbol, a; say. In the DFA we
move to state m, say, which is the target of the transition labelled @y from state
0. We construct a state node, vy, in the GSS labelled m, which is added to the
set Uy, we construct a symbol node labelled a;, and we make this symbol node a
successor of v1 and a predecessor of vg. In our example the input consumed is a

and we move to state 1.
(O —O"

Next we look at state m in the DFA to see if it has any reductions on the
next input symbol ag, i.e. to see if vy has any valid reductions. Since we have
only consumed one input symbol, such items must actually be of the form (A =
ai-, az). In our example, the state node labelled 1 contains two reductions (7' ::=
a-,b) and (D ::= a-,b). We retrace the path of length 2 from v; to reach the state
node vy. We then traverse the DFA from state 0 along the transitions labelled D
and T to reach states 3 and 5. We create state nodes vy and v labelled 3 and
5 and add them to the set Uy, and we create symbols node which has vy as a
successor and vy and vz as predecessors.
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Uo n @ U]
()"
()™

We then check the newly added state nodes for valid reductions, and continue
the process until Uy is input related reduction-closed. In our example, the newly
added nodes don’t have any valid reductions so this step of the process is complete.

In general, at the beginning of step ¢« we have a set U;_1 of state nodes in the
GSS, and remaining input a; . ..a,,$. For each state node, labelled & say, in U;_4
we see if there is a transition in the DFA labelled «; from k to a state m. For
each such transition we first check to see if there is a state node in U; labelled m.
If there is not we create such a state node in the GSS and add it to U,. If the
state labelled m has a successor labelled ¢; then add an arrow from this node to
the node in U;_; labelled k. Otherwise, create a successor node of m labelled a;
and make this node a predecessor of the node labelled m. When all the nodes
in U;_1 have been dealt with we have U; = U;_1q;. In our example at step 2 we

have U; = {1, 3,5} and U;b = {2,6,9}.

0 —O—F—®
D@L+

We then form the input related reduction-closure of the set U,_ia;. For each
state node, v € Uy, labelled k say, in U;, and for each item (A = x1...2m", Git1)
in k, find all the state nodes u, labelled [ say, in the GSS which are on a path of
length 2m from v. Let ¢ be the node reached from [ along the transition labelled
A in the DFA. If there is not already a state node in U; labelled ¢ then create
such a node, w, and add it to Uj.

@.“_ ._@“
(9)"

If there is already a path of length 2 from w to u then do nothing. Otherwise
create a symbol node labelled A which is a successor of w and a predecessor of
u. We continue this process until all the reductions in all the nodes in U; have
been dealt with, i.e. until U; is closed under input related-reductions.

Applying this to our example, computing the input related reductions from
nodes labelled 2,6 and 9 adds new state nodes labelled 3,5, and 7 to Us.
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The newly created node labelled 7 has a reduction which leads back to state 0
and then to state 5. However, there is already a state node labelled 5 in U
which has a path of length 2 back to the state node in Uy labelled 0, so we don’t
need to add anything to the GSS. The set U; is now closed under input related
reductions, and step two is complete.

Reading the final input symbol, b, yields the following GSS

HOHEO®E
=] [ [
OOJ0,

The only state which has a reduction on the lookahead symbol $ is state 6.
Performing the input related reduction on this state gives the final GSS below,
in which Uy = {0}, Uy = {1,3,5}, U, = {2,3,5,7,9} and U3 = {2,4,6,8}.

HE®OHE

In general, if at any step the set U; is empty, i.e. there are no transitions
labelled a; from any state node in U;_q, or if U, does not contain the accepting
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node of the DFA, then the input string is not in the language and the process
stops and reports failure. Otherwise the process stops when the construction of
U, is complete and reports success. In our running example, since Us contains a
state node labelled 4, the DFA accepting state, the input abb has been correctly
recognised.

Dealing with e-rules

For general grammars it is possible for the start state of the DFA, and of course

other states, to contain reductions of the form (A = - a). It is not difficult to
incorporate such reductions into the model described above.
If a node v € U; has label &, and h contains an item (A ::= -, a,41) then we

find the entry gk in row h, column A of the LR(1) table. We then check to see
if there is a node w € U; with label k. If not, we create one. We then create a
node u labelled A and make u a predecessor of v and a successor of w. The effect
of this is to add paths between two nodes at the same level in the GSS. In some
cases this will result in cycles in the graph, but this does not affect the parsing
process.

We illustrate this using the following example:

input: a

We begin in the start state, state 0, and construct a state node, vg, labelled 0 in
the GSS. There are no valid reductions in state 0 when the next input symbol is
a, thus Uy = {vp}. We then read the a, create new nodes u; and vy labelled «
and 2, respectively, and add vy to U;.

(OF—"LF—"

There are two valid reductions in state 2, (A == -,$) and (S == -,$). These
generate two new state nodes, vy and vz, which are added to Uy together with
the paths of length 2 from them to v;.
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The reduction at vy results in the creation of a new node, v, labelled 1, in Uj.
The valid reduction at vs results in a path of length 2 from vy to ve, but this
path already exists, so no further action is taken.

The construction of Uy is now complete, and it contains a node whose label is
the accept state of the DFA, so the input string is accepted.

2.4 Further issues to be considered

All of the algorithms that we shall discuss in this report are based on the process
that we have described in the previous sections: begin with the start state of the
DFA and construct its input related reduction-closure Uy. At step ¢ with input
a; form the set U;_ja; of states which can be reached from a state in U;_; along
a transition labelled a;. Then construct the input related reduction-closure, U;,
of U;_1aj.

The issues which remain to be addressed are the explicit method by which the
input related reduction-closures are computed (how the reductions are identified)
and the nature and method of construction of the derivation trees for the given
input string. It is useful to identify three aspects of the process

o the GSS and its construction
¢ the output derivation trees

o the method of constructing the output from the GSS

We can measure the efficiency of the overall parser in terms of the size of the
GSS, the efficiency of the GSS construction method, the size of the output trees
and the efficiency of the method by which these trees are constructed.

We shall look at the specific GSS construction algorithms given by Tomita [Tom86]
and Farshi [NF91], and then we shall then give our own algorithm which is based
on the insights gained by studying the underlying principles of Tomita’s algo-
rithm.
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3 Tomita’s algorithms

3.1

In his 1986 paper [Tom86] Tomita actually gives five algorithms for generalised LR
parsing. All of these algorithms essentially calculate the input related reduction-
closure of the current set U,_jq; of states as described above. We shall refer to
these algorithms as Algorithms 0, 1, 2, 3, and 4.

Algorithm 0 is just an introduction to the basic ideas an applies only to LR(1)
grammars. We shall not discuss this algorithm.

Algorithm 1 contains most of the machinery needed for the recogniser role of the
parser, but it is only applied to e-free grammars and there is no direct discussion
of the tree building role of the parser. This is the algorithm that we shall focus
most of our attention on and the one we have been referring to as Tomita’s first
stage algorithm.

Algorithm 2 is an attempt to generalise Algorithm 1 so that it is applicable to
all context free grammars, however the algorithm actually fails to terminate on
grammars which contain hidden left recursion.

Algorithm 3 is a minor extension of Algorithm 2 which constructs a slightly more
efficient GSS. The main aim of this extension is to allow the construction of more
efficiently packed derivation trees.

Algorithm 4 builds the same GSS by the same method as Algorithm 3 but it
also has the mechanisms for building the output derivation trees in the form of a
packed shared parse forest.

In this report we shall discuss Algorithm 1 with the modifications given in Al-
gorithm 3. We shall then discuss the applicability of this algorithm to grammars
which contain e.

Processing reductions

Consider a GSS whose associate input string is ay...a,. As we have already
stated, each set, U;, of level i state nodes in the GSS must be input related
reduction-closed. This means that when a new state node v, labelled h say, is
added to U; we need to construct a (possibly empty) set of pairs of the form
(A, m), one for each item of the form (A ::= 2y ...2p-, aj11) in k. We then need
to find all state nodes w in the GSS such that there is a path of length 2m from
v to u. Thus we need to explore all paths of length 2m from v. The problem
is that we may add a new successor node from v at a later stage in the process,
creating a new path of length 2m from v which was not there when the valid
reductions from v were originally dealt with. Since the set U; must be input
related reduction-closed, the node v must be processed again to deal with the
new reduction. To illustrate this issue let us consider the following example.

S = S

S = aDa
T == Bla
D == aD
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input: aaaaa$

The following is the GSS which will be constructed when input aaaa has been

read and the set Usa = {vy,v2} has been built.
)"

©—]

[°]

The node v; has a valid reduction of length 1 which results in the creation of a
state node, vz, labelled 7. The node vy has no valid reductions, the nodes vy and
vy have been dealt with, and the GSS has the form

(0]

The node v3 has a valid reduction of length 2 which results in the creation of a
new state node vy labelled 4. There is only one path of length 2 from w3 so this
node has now been dealt with. There is also a valid reduction of length 1 in node
vgq. There is already a state node in Uy labelled 7, v3, so no new node is created,
the node v3 is re-used.
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If we don’t re-process vs then we will miss the valid reduction along the path of
length 2 from vs to the node at level 2. In addition, when we then read the final
input we end up with the following GSS in which Us = {u;} and the parser will
(incorrectly) report that the input string is not derivable from the grammar.

Oh

However, if we re-process the node vs we will generate a new path from the
node v4. This in turn introduces a new valid reduction from v4 which results in

the construction of a new node, vs, labelled 5.

Now when we read the final input symbol and form the input related reduction
on uy we get the following GSS
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Then Us = {uy, ug, uz} contains a node, us, whose label is the accepting state of
the DFA, so the input has been correctly recognised.

Storing pending reductions

If we need to visit a node again because a new path has been introduced we don’t
wish to search all paths again. Re-computing previously computed reductions
will not cause an error because ultimately the check for the pre-existence of a
path of length 2 will prevent duplication of the reductions. (If this check were
not there then the process could fail to terminate!) However, graph searching is
a relatively expensive operation and to repeat searches that have already been
carried out will make the parser very inefficient. Tomita addresses this issue by
keeping a set of pending reductions which records both the reduction rule to be
applied and the first edge of the path(s) along which the reduction should be
traced. When a state node is created in the GSS it has a label, h say, and a
successor node, u, which is a symbol node.

Lm0l

The list of grammar rules is numbered and, for each item (A = 21 ... 2p-, aiq1)
in h, where a;41 is the next input symbol, the pair (rj, u) is added to the set of
pending reductions, where j is the number of the rule A ::= 2z ...2,,. When the

pair (rj,u) is processed, all paths from u of length 2m — 1 are found. (This, of
course, is equivalent to finding all paths of length 2m from v which include the
edge (v,u).) If, at a later stage, a new path from v is created by adding a new
edge whose source is v

then, for all reductions rj in h, the pairs (rj, v’) are added to the set of pending
reductions. This allows the new possibilities to be processed without reprocessing
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reductions along paths that have already been explored. In addition, Tomita
maintains a set @ of pairs (v, h) where v is a state node in U; with label k and
h is a DFA state such that there is a transition labelled ;41 from & to h. The
set () contains the ‘shift actions’ which must be used to construct the set U;a;41
from the set U;.

Tomita’s first stage algorithm

We are now in a position to give Tomita’s Algorithm 1. The algorithm uses the
following sets for ‘book keeping’ purposes:

A: the set of state nodes in the GSS awaiting processing

U;: the set of level ¢ state nodes in the GSS

R: the set of pending reductions

Q: the set of pending shifts

There are three functions which build the GSS:

ACTOR: Processes state nodes from the A, putting pending shifts and reductions
into the sets R and Q.

REDUCER: Processes pending reductions from the set R, creating new state and
symbol nodes in the GSS as necessary. This function constructs the input related
reduction-closures of the set U;a;y1.

SHIFTER: Processes the shifts from the set (), constructing the state nodes in
set U;a;q1.

Algorithm 1

input: an e-free context free grammar whose production rules are uniquely num-
bered, a DFA constructed from this grammar in the form of a standard ac-
tion/goto table, and an input string a; ...a,$.

create a state node vy labelled with the start state 0 of the DFA.
set Up={v}, A=0,R=0,Q=10
for i = 0 to n do PARSE_SYMBOL(z)

PARSE SYMBOL(i) {
A=U;
Ut =10
while AZ() or R#( do
if A# () do ACTOR(:) else do REDUCER(?)
do SHIFTER(i)

}

ACTOR(7) {
remove v from A, and let h be the label of v
if ‘shift £’ is an action in position (h,a;41) of the DFA table, add (v, k) to @
for each entry ‘reduce j’ in position (h,a;;+1) of the DFA table {

}

REDUCER(:) {

for each successor node u of v add (u,j) to R }
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remove (u,j) from R
let m be the length of the right hand side of rule j and let X be
the symbol on the left hand side of rule j
for each state node w which can be
reached from u along a path of length (2m — 1) do {
let £ be the label of w and let gl be the entry in
position (k,X) of the DFA table
if there is no node in U; labelled [ then create a new
state node, v, in the GSS labelled [ and add v to U; and to A
let v be the node in U, labelled [
if there is a path of length 2 in the GSS from v to w then do nothing
else {
create a new symbol node u’ in the GSS labelled X
make 1’ a successor of v and a predecessor of w
if vis notin A {
for all reductions rk in position (I, a;41) of the table add (u, k) to R}
}
}

SHIFTER(7) {
while Q £#0 do {
remove an element (v, k) from Q
if there is no node, w, labelled k in U;11 create one
if w does not have a successor node, u, labelled a;;, create one
if u is not already a predecessor of v, make it one }

}

let ¢ be the accepting state of the DFA
if U,, contains a state whose label is ¢ report success else report failure

Note: The action of the SHIFTER which results in the sharing of the symbol
node in the case where the shift results in the parser moving to the same state,
is actually a modification that Tomita introduces in his third stage algorithm,
however we have included it here because it is only a minor extension and we
have included in our implementation of Algorithm le below.
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4 Tomita’s algorithm applied to general grammars

4.1

There is no operational aspect of Tomita’s Algorithm 1 which prevents it from
being applied to grammars which include e-productions. We can modify Algo-
rithm 1 slightly to apply e-reductions once, when a node is processed for the first
time. The effect of this is that paths will be added between nodes in the same
U; in the case of nullable production rules. (Tomita’s Algorithm 2 contains this
modification along with other modifications which result in the splitting up of the
U; into subsets. We shall briefly discuss this later.) We shall call the algorithm
Algorithm 1le to indicate that it is admitting e-productions.

In this section we shall give Algorithm le and show that it works on an
example grammar which contains hidden left recursion. We shall the consider
the problems with this algorithm and identify the grammar properties which can
trigger these problems.

Algorithm le

The following is a slight modification of Tomita’s Algorithm 1 which allows input
grammars to contain productions.

input: a context free grammar whose production rules are uniquely numbered, a
DFA constructed from this grammar in the form of a standard action/goto table,
and an input string a; ...a,$.

create a state node vy labelled with the start state 0 of the DFA.
set Up={v}, A=0,R=0,Q=10
for i = 0 to n do PARSE_SYMBOL(z)

PARSE SYMBOL(i) {
A=U;
Ut =10
while AZ() or R#( do
if A# () do ACTOR(:) else do REDUCER(?)
do SHIFTER(i)

}

ACTOR(7) {
remove v from A, and let h be the label of v
if ‘shift £’ is an action in position (5, a;41) of the DFA table add (v, k) to @
for each entry ‘reduce j’ in position (h,a;11) of the DFA table
if the length of j is 0 add (v,j) to R

else add (u,j) to R, for each successor node u of v

}

REDUCER(:) {
remove (u,j) from R
let m be the length of the right hand side of rule j and let X be
the symbol on the left hand side of rule j
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ifm=0
let k& be the label of u and let gl be the entry in position (k, X)
of the DFA table
if there is no node in U; labelled [ then create a new state node, v,
in the GSS, labelled ! and add v to U; and to A
let v be the node in U, labelled [
if there is a path of length 2 in the GSS from v to u then do nothing
else {
create a new symbol node v’ in the GSS labelled X and make
1’ a successor of v and a predecessor of u
if v is not in A, for all reductions rk in position (I, a;41)
of the DFA table, with length# 0, add (u', k) to R }
else
for each state node w which can be reached
from u along a path of length 2m — 1 do {
let & be the label of w and let gl be the entry in position (k, X') of the table
if there is no node in U, labelled [ then create a new
state node, v, in the GSS labelled [ and add v to U; and to A
let v be the node in U, labelled [
if there is a path of length 2 in the GSS from v to w then do nothing
else {
create a new symbol node v’ in the GSS labelled X
make u’ a successor of v and a predecessor of w
if v is not in A {
for all reductions rk in position (I, a;41) of the table add (u, k) to R}

}

SHIFTER(7) {
while Q £#0 do {
remove an element (v, k) from Q
if there is no node, w, labelled k in U;11 create one
if w does not have a successor node, u, labelled a;;, create one
if u is not already a predecessor of v, make it one }

}

let ¢ be the accepting state of the DFA
if U,, contains a state whose label is ¢ report success else report failure

4.2 An example with hidden left recursion

We illustrate Algorithm le by running it on the following grammar and input
string aa (note the grammar contains hidden left recursion).

S =S
S == SSa|e
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$ a S
0| 2 r2 g5
1 rl
2 r2/s1 | g2
3|1l rl
4 12/s3 | g2
5 | acc r2 g4

We begin in state 0 with just a node vy labelled 0 in the graph structured
stack. So we have A = Uy = {vw}, R = Q = 0 and the lookahead symbol is
a1 = a. We remove vy from A and note that the only action is to reduce using
the rule S ::= €. Since the length of the rule is 0, this adds the pending reduction
(vo,2) to R. When we process this reduction we find that the goto node is state
5. There is no node labelled 5 in Uy so we create one, vy, and add a path from it
to vg via a node labelled S. The node vy is added to Uy and to A.

©"
()" a={u}

We then remove the node v; from A, process the reduction § ::= €, create an
new node, vy labelled 4, and a path from v, to v. Processing vy creates another
new node, vs labelled 2, and adds the pending shift (vq,3) to the list Q.

vo

OO

R=0
Vs Q:{(U273)}
A ={us}

Processing vs, there is already a node in Uy labelled 2, vs itself. Thus we simply
add a path from vs to itself and add the pending shift (vs, 1) to (). Since there
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are no reductions in state 2 of length greater than zero, the addition of a new
edge from node vs does not create any new pending reductions. So we perform
the pending shifts, creating new states v4 and vs which are added to Uy.

vo

<
=

V4

HE§H<DIFD
&)

U3 EI @U5
A ={vs,vs5}

Now we add the nodes v4, vs to A and remove and process v4. From state 3 we
can apply the reduction S ::= 5Sa which takes us back to vy and hence the goto
state is 5. There is no node labelled 5 in U; so one, vg, is created and added
to A. We then remove and process vs. There are three paths of length 6 from
vs, which take us to nodes vs, vy and vy. The first two generate a new node vz,
labelled 2, and paths of length 2 from v; to vz and vy, and the third generates a
new node vg, labelled 4, and a path of length 2 from vg to vy.

5]

Ve

<
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X
<
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A = {ve,vr,vs}

We remove and process node vg which results in the creation of a path of length
2 from vg to vg. We then remove and process v; which results in a new path of
length 2 from vr to itself, and in a pending shift (v7,1). Finally we remove and
process vg which results in a new path of length 2 from v; to vg and a pending
shift (vs, 3). Since state 2 contains only reductions of length 0, no new reductions
are created down the new edge, and the construction of U; is complete. The
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pending shifts are then processed, creating new nodes vg, v19 which are added to

U, and to A.

et —0"
U3
GO

A = {Ug7 UlO}

)

Removing vg from A, there are no actions that can be applied. Processing vig
results in the creation of a new node, vy, labelled 5 and a path of length 2 from
v11 to vg. The second path of length 6 from v also results in need for a node
labelled 5, but there already is one, and a path of length 2 of the required type,
so no further action is taken. There are no actions which can be applied from
state 5 so the construction process stops.
U11
il an©)

5]

Vs V10
@

Since Us contains a node, vy1, whose label is the accepting state of the DFA, the
algorithm reports success and the string aa is accepted.

The (in)correctness of Algorithm le

Tomita’s Algorithm 1 and Algorithm le will always terminate, even given a gram-
mar with hidden left recursion, because each U; can only contain as many nodes
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as there are states in the original DFA and there is at most one path of length 2
from any node in any U; to any node in any Uj.

The problem is that it is possible for Algorithm le to reject strings which
are actually in the language in certain special cases. We shall now look at these
special cases.

Hidden right recursion

In Tomita’s Algorithm 1 and Algorithm le reductions are added to R with the
first edge down which the reduction is to be applied. This prevents the algorithm
from performing unnecessary work in re-tracing reductions down paths that it
has already explored. However, as a consequence it is necessary to ensure that
new paths from an existing node in the GSS are only created by the addition of
a new edge from the first node in the path. We now illustrate this point.

We say that a non-terminal, A, has hidden right recursion if it has a rule of
the form A ::= «Af3, where ﬂé}e A grammar has hidden right recursion if it has
a non-terminal with hidden right recursion.

Consider the following example.

S o= 8

»
2

S
P
&
wn

acc
rd | 4 g3
rl
rd | 4 g5
r4 g6
r2

| O | W N PO

We run Algorithm le with the above table and input string baa. There are no
reductions on lookahead b or a so the construction of Uy, Uy and Us is straight-
forward and generates the GSS

(O }—C)—Ta—®)" A= for)

We then process the pending shift from v, on the second a, to create a new node,
vs, labelled 4 which is added to Us and then to A. This is the only node in A so
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we remove and process it. The action r4 creates a new node, vy, labelled 5 which
is added to Us and A, and a path of length 2 from vy to vs. Again, vy is the only
node in A so we remove and process it. The action r4 creates a new node, vs,
labelled 6 which is added to Us and A, and a path of length 2 from v to v4.

@UO @Ul E @U2 E @U?)
)"
B
@U5 A= {vs}

Now we remove and process vs. There is a reduction of length 3 which takes us
back to the node vy and then, from row 4 of the table, we see that we need to
add a path of length 2 from the node, vy, in Us which has label 5 to the node v,.

@Uo E @Ul

=]

v2

4 a

2]

Algorithm le now requires us to add any reductions, of length greater than 0,
in position (5, %) of the table to the pending reduction set R. There are no such
reductions so R and A are empty and the algorithm terminates. Since there
is no node in Us with label 1 (the accept state of the DFA) the string baa is
(incorrectly) rejected.

The problem is that a new path has also been created from node vs and
we need to apply a reduction down this path. Tomita addresses this issue by
subdividing the sets U; and creating a new subset every time a reduction is
applied. The effect of this is that when the first reduction from vy is computed
a new subset Us; is created. The existing node, v4 is not in this subset so a new
node, vg, labelled 5 is constructed.
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i l—"
Ok

i

@U5 A= {ve}

Then, when vg is processed, the reduction is applied to construct a new node
labelled 6, and then finally the reduction from state 6 is applied.

@Uo E @Ul

2]

This approach, which is the basis of Tomita’s Algorithm 2 although slightly sim-
plified in the above description, will result in the correct recognition of the string
baa but the introduction of the subdivisions of the U; causes the algorithm to fail
to terminate when given a grammar with hidden left recursion.

Farshi addresses this issue by revisiting all the nodes in U; and finding all paths
which contain the newly added edge and then applying all reductions down these
paths. We shall formally describe this method in Section 5, but the method
is inefficient in that it has to search for all paths containing a specified edge.
Thus, before describing Farshi’s method we shall analyse the grammars on which
Algorithm le fails. We shall use this information in Section 6 to give a different
solution which involves modifying the LR(1) DFA so that Algorithm le works
correctly on all grammars.

Right nullable rules

In the previous section we saw that Algorithm le incorrectly rejected a string as
a result of failing to apply a reduction down a path which was created after the
node which generated the reduction was processed. This occurred because a new
path was created by adding a new edge from a node which was in the middle of
an existing path, i.e. from a node which already has at least one parent. In this
section we analyse the grammar properties which permit this situation to occur.
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Suppose that we are at step ¢ of the algorithm, so that the set U; is being
constructed. Suppose also that we have an existing path in the GSS whose first
node is t, and suppose that a new edge is created from a node, v say, in the path
to a node u. Since the node v is assumed to already exist, this path must have
been created as the result of a reduction, A ::= « say.

OO - B O
O

This new path will only create a problem if there is a node, w say, which has
already been processed, which is not equal to v, and whose state, h say, contains
a reduction, B ::= (- say, where twice the length of j is at least the length of the
new path from w to w. Also, since v # w, we may assume that m > 1.

First we note that a new edge is only added from a state node in the GSS
if that node belongs to the current U;, i.e. if the node was created during the
current step of the algorithm. Thus v must be in U;. All the nodes, s, for which
there is a path from s to v must have been created after v and hence must also
be in U;. Thus we re-draw the above GSS fragment as follows:

OO

f

It is not hard to show, by induction on the order on which the edges were created,
that if a path of length 2 is created between any two nodes in the same U; then
this path must have been created as a result of a reduction of the form C 1=~
where v=¢, see Lemma 3 below. Thus we may assume that for each of the T
which label symbol nodes on the path from ¢ to v we have x; ::= +; where 'y,:*>6.

We say that a rule of the form A ::= a3 where ﬂé}e is right nullable and a
grammar is right nullable if it contains a right nullable rule.

In order for a reduction to fail to be applied it is necessary both for an edge
to be added part of the way down an existing path and for the reduction which
adds this edge to be processed before the reduction which is to be applied down
the new path. In other words, our addition of e-handling capability to Tomita’s
first algorithm makes that algorithm sensitive to the order in which reductions
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are processed. Consider the following example,

S =8
S == BDab | aDad
D == aAB
A = aBB|e¢
B = ¢
11 10 9
#= BD - ab, §——(G = BDa b §—(S = BDab,$)

B 4

! 3 2 1
@ m=al - ad, SDL{S' n=alDa -d, SDL{S = aDad-, $) (A n=aBB-, $)

$ a b|d|A| B D S
0 s15/16 gl4 g13
1 r2
2 sl
3 s2
4 r4
5 r6 g4
6 r3
7 6 g6
8 6 g5
9 rl
10 s9
11 s10
12 s8/15 g7
13 | acc
14 s12 gll
15 s12 g3

We construct the GSS for the input string aaab. The GSS constructed at the
point where the second « is shifted is
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[a}—1)—a—()"

D (@)D

If we process the node w first, and then the nodes which are created from this

we get
AD—(3)

-—{—W

If we then process the node v and the subsequently created nodes we get
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The subsequent reduction down a path of length 6 from node u to node z is not
detected. This results in the ultimate failure of the parse.

If we had processed node v before node w, and the node w before the node
y, then at the completion of the construction of U;, i.e. just before the third a
was shifted, we would have

D @) T @)

Thus in this case we can avoid the problem of generating new paths down which
a previously processed reduction must be applied by choosing the order in which
nodes are processed carefully. (Note that this processing order will also result in
a successful parse of the string aaad, although if y were to be processed before w
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then this would not be the case.) However, it is not always the case that we can
do this.

The most likely source of problems which cannot be avoided by processing
reductions in an appropriate order are those cases when the additional edge is
created as a result of applying a reduction down the path to which the new edge
will be added. In other words, when a reduction is applied from the node t down
to the node u and the new path is added from a node, v, between t and u, to u.

@ OO

Qt

In this case it is not possible to construct the path t,..., v, u before the node t is
processed because the path from v to u is only created after ¢ is processed. We
shall now show that the only way that a new edge can be added to the middle
of an existing path as a result of applying a reduction down that path is when
the grammar contains hidden right recursion. Thus, in this sense, it is hidden
right recursion which ultimately breaks Tomita’s Algorithm 1 when it is applied
to general context free grammars.

First we note that, by construction of the GSS, for the path from v to u to
be created as a result of a reduction from ¢, ¢ must contain an item of the form
(A= ...221...2,, a;11) and, as we saw above, z;=>¢, for 1 <1< q.

It is not hard to see that if there is a path vy, v9, vz in the GSS where vy has
label hq, vz has label hy and vy has label z then there is a transition from hy to

hy labelled z in the DFA.
ass DFA

vs U2 U1 ho h1
Z
b)) O O
Since all successor nodes of a given state node in the GSS must have the same

label, we must have x = A in the GSS path that we are considering. So A ::=
. Azy ...z, where z; .. .xq:*>6, and hence A has hidden right recursion.

In Section 6 we give an algorithm based on an extension of the underlying
DFA table in which right nullable rules are treated as reductions. We shall show
that this algorithm generates correct parsers for all context free grammars.

Merging symbol nodes

We complete our discussion of Tomita’s algorithms by considering one further
modification that he makes.

We have seen that we can reduce the number of symbol nodes in the GSS by
sharing nodes labelled with a terminal,
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becomes

Of course, in order to simply recognise whether or not a string is in the language
we do not need to include the symbol nodes in the GSS at all. However, Tomita
extends his algorithms so that they produce derivation trees and he constructs
the GSS so that the symbol nodes in the GSS correspond exactly to nodes in the
derivation trees. With this constraint in mind we consider under what circum-
stances non-terminal symbol nodes can be merged.

Two symbol nodes in the GSS can correspond to the same node in the deriva-
tion tree if they have the same symbol and if they generate the same portion of
the input string. If a symbol node labelled A has parent node v € U; and child
node u € U; then it generates the portion aj4 ...a; of the input a; ...a,,. Thus
to be candidates for merger two symbol nodes must have parent nodes in the
same U; and child nodes in the same U;.

We must remember that the role of the GSS is to record paths taken through
the DFA, and merging two symbol nodes which have different parents and differ-
ent children could create spurious paths in the GSS. For example, merging the
following two nodes will create a path from v to w which does not really exist.

w w
() ®

G—a—®" (&) ®"

We can avoid this by requiring that nodes are only shared if they have the same
parent.

We have to check, when adding a new symbol node, whether there already
exists a path of length 2 from the required state in U; to some state in Uj;, but
this check is not much more effort than the check for the existence of a path of
length 2 from the required state in U; to the base state, which is already carried
out. The problem is that, as for the case with right nullable rules, if we allow
the reuse of symbol nodes in this way it is possible to add a new edge from the
second node of an existing path, and hence to fail to perform reductions down
the new path which is created.

Tomita addresses this issue by only allowing sharing of symbol nodes at the
time that the node is created. This means that symbol nodes can only be shared
if the derivation paths which created them co-incide down to the penultimate
node.

This has the advantage of not requiring any checking to see whether paths already
exist, but it severely constrains the number of symbol nodes that can be shared.
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In our algorithm, see Section 6, we shall record pending reductions with the
second state node down the path which they are to be applied, rather than with
the first edge as Tomita does. This will allow us to share all symbol nodes with
the same parent, and children in the same Uj, because reductions will be recorded
with the newly added child rather than with the existing incoming edge. Before
this we look at Farshi’s method for identifying and storing pending reductions.
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5 Farshi’s algorithm

In this section we discuss Farshi’s modification to Tomita’s algorithm [NF91],
which he designed to address the problem with hidden left recursion that Tomita’s
Algorithm 2 displayed. We quote the algorithm here verbatim from Farshi’s paper
because we wish to comment on its efficiency, particularly in light of the comment
made on page 74 of [NF91] which states: “However, the new algorithm works
exactly like the original one in case of grammars that have no e-productions.
This algorithm has no extra costs beyond that of the original algorithm.”

5.1 Farshi’s recognition algorithm for general grammars

input: a context free grammar G whose production rules are uniquely numbered,
a DFA with start state sg, constructed from this grammar, in the form of a
standard action/goto table, and an input string a; ...a,$.

PARSE(G,a;...a,)
=190
Upy1 = $
r := FALSE
create a vertex vy labelled sq
Up :=A{wo}
for i := 0 to n do PARSEWORD(%)

return r

PARSEWORD(i)
A=U;
R=0;Q:=10
repeat
if A # () then do ACTOR else if R # () then do COMPLETER
until R=0 and A =10
do SHIFTER

ACTOR
Remove an element v from A
For all @« € ACTION(STATE(v), a;+1) do
begin
if & = ‘accept’ then r :=TRUE
if o = ‘shifts’ then add (v, s) to Q
if @ = reducep then
for all vertices w such that there exists a directed
walk of length 2|RH S(p)| from v to w
/* For e-rules this is a trivial walk, i.e. w = v %/
do add (w,p) to R

end

COMPLETER
Remove an element (w, p) from R
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N :=LHS(p); s :=GOTO(STATE(w), N)
if there exists u € U; such that STATE(u)= s then
begin
if there does not exist a path of length 2 from u to w then
begin
create a vertex z labelled N in I’
create two arcs in I' from u to z and from z to w
for all v € (U;\A) do
/+ In the case of non-e-grammars this loop executes for v = u only */
for all ¢ such that ‘reduceq” €ACTION(STATE(v),a;41) do
for all vertices t such that there exists a directed walk of
length 2|RH S(q)| from v to ¢ that goes through vertex z
do add (t,¢) to R
end
end
else /+ i.e. when there does not exist u € U; such that STATE(u)= s */
begin
create in I two vertices u and z labelled s and N respectively
create two arcs in I' from « to z and from z to w
add u to both A and U;

end

SHIFTER
Ui—l—l =10
repeat
remove an element (v, s) from @
create a vertex z labelled a;49 in I’
create an arc from z to v
if there exists a vertex u € U4 such that STATE(u)= s then
create an arc from u to x
else
begin
create a vertex u labelled s and an arc from « to  in T’
add u to U;4q
end

until Q =

5.2 The efficiency of Farshi’s algorithm

In this section we shall compare Farshi’s algorithm with Tomita’s algorithms.
While we believe it is the case that Farshi’s algorithm constructs the same GSS
as Tomita’s original algorithm for e-free grammars, we do not believe that the
algorithm as stated has ‘no extra costs beyond that of the original algorithm’. In
addition, Farshi’s algorithm does not adopt the symbol node merging introduced
in Tomita’s Algorithm 3. We now discuss these issues with respect to the method
Farshi uses for storing pending reductions.



Farshi’s algorithm 36

Recall that in Tomita’s algorithms pending reductions are stored with the first
symbol node on the path down which they are to be applied. Thus, if a new path
is created by adding an edge in the middle of an existing path, Tomita’s method
does not provide a mechanism for storing pending reductions down the new path
without also re-exploring the other paths that begin with the same node. In
order to overcome this, Farshi’s algorithm stores reductions together with the
nodes at the ends of the paths down which the reductions can be applied. This
is essentially equivalent to Tomita’s method, it is just that the path tracing is
carried out a different point in the algorithm. (Although it is possible that with
Farshi’s method the set R of pending reductions will tend to be larger.)

It is trivial to modify Farshi’s algorithm so that symbol nodes corresponding
to terminals are merged where possible, and we have done this in the version
that we have implemented, see Section 5.3. However, as reductions are stored
with the final node in the path it is not possible easily to tell when two different
reduction,node pairs share the same path up to the penultimate node. Thus the
second type of symbol node merging employed in Tomita’s Algorithm 3 is not
used either in Farshi’s algorithm or in our implementation of it.

The main issue with Farshi’s algorithm is the additional effort introduced by
the need to search for all paths containing a given node, z, when storing pending
reductions. (This is the search carried out as part of the inner loop on line 12
of the COMPLETER function above.) As actually stated in the algorithm, it is
necessary to search for all nodes on the current frontier, U;, which are not awaiting
processing, and then, for all reductions associated with these nodes, find all paths
of the appropriate length which include z. This proposal essentially defeats the
object of Tomita’s original decision to store reductions with the first node on the
appropriate path. If we just stored the reductions alone, and re-stored them each
time an edge is added to the GSS, then the only additional cost over Farshi’s
method would be a check for the existence of path of length 2 in the case where
the reduction had already been applied. (This check would confirm the existence
of the path and no further work would be done.)

There is a comment in Farshi’s algorithm a few lines above the searching loop
which states that for non-e grammars the ‘for’ loop only executes for v = u. It
is true that this is the only case in which additional elements are added to R,
but with the algorithm as stated, in all cases the searching will be carried out
for all nodes in U; not awaiting processing. We assume that Farshi intends the
implementor to put in a check for non-e¢ grammars before the comment and to
implement a different action in this case.

If the GSS is implemented so that searching back up paths is as efficient as
searching down them, i.e. if the predecessors of a node can be found efficiently,
then, with a somewhat more careful description of the search process, we can
modify Farshi’s algorithm so that it has essentially no additional costs over Al-
gorithm le on grammars with no right nullable rules, and so that the searching
costs for general grammars are reduced. Of course, implementing directed graphs
so that predecessors can be found as efficiently as successors does increase the
space required by the implementation. We assume that this is the reason that
Farshi’s algorithm does not adopt this approach. However, with modern memory
availability we feel that the space cost is worth trading for increased speed of
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the algorithm. Thus we present our modified version of Farshi’s algorithm in
Section 5.3, and this version is the basis of the implementation that we have used
in our practical comparison of the various algorithms, see Section 7. In Section 6
we shall present an algorithm in which pending reductions are stored with the
first node on the new part of the path down which they are to be applied, thus
avoiding any additional searching over that required in Tomita’s Algorithm 1.

A modified version of Farshi’s algorithm

In this section we give a modified version of Farshi’s algorithm in which the
costs involved with searching for paths containing a specified node are reduced
(provided that the GSS implementation allows predecessor nodes to be efficiently
found), and in which symbol nodes corresponding to terminals are merged in
certain cases. The only changes are in the SHIFTER and the COMPLETER.

input: a context free grammar G whose production rules are uniquely numbered,
a DFA with start state sg, constructed from this grammar, in the form of a
standard action/goto table, and an input string a; ...a,$.

PARSE(G,a;...a,)
=190
Upy1 = $
r := FALSE
create a vertex vy labelled sq
Up :=A{wo}
for i := 0 to n do PARSEWORD(%)

return r

PARSEWORD(i)
A=U;
R=0;Q:=10
repeat
if A # () then do ACTOR else if R # () then do COMPLETER
until R =0 and A=10
do SHIFTER

ACTOR
Remove an element v from A
For all @« € ACTION(STATE(v), a;+1) do
begin
if & = ‘accept’ then r :=TRUE
if o = ‘shifts’ then add (v, s) to Q
if @ = reducep then
for all vertices w such that there exists a directed
walk of length 2|RH S(p)| from v to w
/* For e-rules this is a trivial walk, i.e. w = v %/
do add (w,p) to R

end
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COMPLETER
Remove an element (w, p) from R
N :=LHS(p); s :=GOTO(STATE(w), N)
if there exists u € U; such that STATE(u)= s then
begin
if there does not exist a path of length 2 from u to w then
begin
create a vertex z labelled NV in T’
create two arcs in I' from u to z and from z to w
for each odd integer d and vertex v ¢ A which is a predecessor of z
along a path of length d do
for all ¢ such that ‘reduceq” €ACTION(STATE(v),a;41) do
for all vertices ¢ such that there exists a directed walk of
length 2|RHS(q)| — d from v to ¢ that goes through vertex z
do add (t,¢) to R
end
end
else /+ i.e. when there does not exist u € U; such that STATE(u)= s */
begin
create in I two vertices u and z labelled s and N respectively
create two arcs in I' from u to z and from 2 to w
add u to both A and U;

end

SHIFTER
Ui—l—l =10
repeat
remove an element (v, s) from @
if there exists a vertex u € U4 such that STATE(u)=s then
create an arc from « to v where z is the child, labelled a;41, of
else
begin
create a vertex u labelled s and an arc from » to z in I’
add u to U;4q
end

until Q =
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6 GLR parsing with a modified DFA

6.1

In this section we describe a general parsing algorithm which we prove is cor-
rect on all context free grammars and input strings. The algorithm is based on
Tomita’s Algorithm 1, incorporating the minor additions given in Algorithm le
above, but reductions whose final symbols are nullable are applied when the last
non-nullable symbol is seen. L.e. if we have a production rule A ::= aBC' where
B= ¢ and CZ¢ we treat the item (A ::= a- BC,b) as though it were a reduction.

The reduction modified DFA and an example

We construct the LR(1) DFA for a grammar in the normal fashion. However, in
the corresponding table we store the reductions slightly differently. As usual, if
there is a transition from state h to state k labelled x then we store sk or gk in
position (h,z) of the table. If I contains an item of the form (A = z1...2p, -
By...By, b), where t =0 or Bp:*>€ forall<p<tand 4A:=21...2,B1...B;
is production rule number j, then we store the action (rj, m) in position (h,a) of
the table.
We illustrate this using the following example from Section 4.4

S =8

S = bA

A = aAB|e€

B = ¢

$ al|b|A|B|S

0 s2 gl
1 acc
2| (r3,0)/(r1,1) | s4 g3
3 (r1,2)
4| (r3,0)/(r2,1) | s4 g5
5| (14,0)/(r2,2) g6
6 (r2,3)

We describe the construction of the GSS from this table with input string baa.
We begin with the base node, vy, labelled 0. The action in position (0,b) is
s2 so we create a new state node, vy, labelled 2 and a new symbol node labelled

O —Q@)

We then read the next two input symbols, aa, and create new symbol nodes vy
and vs in a similar fashion.

Yo v1 2 v3

v
O——_—@——A—O—_{+—O

When the node vs is created the entry (r3,0) in position (4,$) results in the
construction of a new node, vy, and (r2,1) adds another path from v,.
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The reduction (r4,0) results in a new node vs. The reduction (r2,2) does not
need to be applied down the path from vy through vz because this action was
already taken when the reduction (r2,1) was applied. (If we do apply (r2,2)
down this path we will simply find that the path of length 2 from vy to vy already
exists.) Thus the reduction (r2,2) is just applied down the path through vy,
resulting in a new node vg.

vo v1 v2 v3

Or—T—O

In the same way, the reduction (r2,3) in position (6,$) does not need to be
applied down the path from vs through vs. The reduction (rl1,2) is applied from
node vg to generate node vr, and the construction is complete.

Or——®
;

U4
©
+U5

©

Ve

3

o}

Since vr is the accept state of the DFA, the string is accepted.
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6.2 Generalised reduction modified LR parser (GRMLR)
input: reduction-modified DFA, input string ay ...a,$

PARSER {
create a state node vg labelled with the start state 0 of the DFA.
set UO = {Uo}, R = @, Q = @, Upy1 = $, U1 = @, ceey Un ZQ
if sk €table(0, a1) add (vo, k) to Q
for all (rj,0) €table(0,a1) add (vo, X, 0) to R, where X is the LHS of j
for i = 0 to n while U; # 0 do {
A=U;
while R # () do REDUCER(3)
do SHIFTER (i)
}

if the DFA accepting state is in U,, report success else report failure

}

REDUCER(:) {
remove (v, X, m) from R
find the set y of state nodes which can be reached from v along a path of
length 2(m — 1), or length 0 if m =0
for each state node u € y do {
let k& be the label of u and let gl be the entry in table(k, X)
if there is a node w € U; with label I {
if there is not a path of length 2 from w to u {
if there is a path of length 2 from w to a node in Uj;
make the symbol node in the middle of this path a predecessor of u
else create a symbol node labelled X which is a successor of w
and a predecessor of u
ifm#0 { for all (rj,t)in table(l, a;4+1) where t # 0
and B is the LHS of j, add (u, B,t) to R }
)
else {
create a new state node, w, in the GSS labelled [ and a new symbol
node, y, labelled X
make y a successor of w and a predecessor of u
add w to U;
if sh etable(l, a;41) add (w, h) to Q
for all reductions (rj,0) in table(l, a;4+1) add (w, B,0) to R where
B is the LHS of j
if m#0{ for all (rj,t) in table(l, a;41) where t # 0
and B is the LHS of j, add (u, B,t) to R }
}

¥
¥

SHIFTER(i) {
ifi £n{



GLR parsing with a modified DFA 42

Q' =0 (atemporary set to hold new shifts)
while Q #0 do{
remove an element (v, k) from Q
if there is w € U;41 with label k {
let u be the symbol node which is the successor of w
make u a predecessor of v
for all (rj,t) in table(k, a;42) where t # 0 add
(v, B,t) to R, where B is the LHS of j
}
else {
create a new state node, w, in the GSS labelled [ and a new symbol
node, u, labelled ;11
make u a successor of w and a predecessor of v
add w to U;
if sh etable(k, a;42) add (w, h) to Q'
for all (rj,t) in table(k, a;42) where t # 0
add (v, B,t) to R, where B is the LHS of j
for all (r7,0) in table(k, a;42) add
(w, B,0) to R, where B is the LHS of j
}
}
copy Q' into Q
}
}

Our algorithm is in the same style as Tomita’s Algorithm 1 except we do not
have a separate ACTOR which processes nodes in the GSS. In our algorithm,
when a node v is created, any shift which is possible on the next input symbol is
immediately recorded in the set (), for execution once the input related reduction-
closure has been completed.

Reductions of length m from v must be applied down all paths from v of
length 2m. If m = 0 there can only ever be one such path, the empty path. If
m > 1 then new paths of length 2m from v are created every time a new successor
node is added to v. Thus when a node is created all reductions of length 0 are
recorded in R. If the node has been created as the result of the application of
a reduction of length 0 (a reduction corresponding to a rule B ::= -a) then any
reductions of length greater than 0 will already have been applied from a previous
node (this is the role of the new reduction items (A ::= « - B, b) etc in the DFA
table) so no reductions of length greater than 0 are recorded.

If the node has been constructed via a reduction of length greater than 0 then
we record in R all reductions of length greater than 0, together with the second
node along the path from v, for subsequent execution.

If a new path from an existing node v is created then this must be as a result
of applying a reduction. If this reduction is of length 0 then any reductions down
the new path will have already been recorded. If the reduction is of length greater
than 0 then the reductions of length greater than 0 in v and this new path must
be recorded in R for subsequent execution. (The reductions of length 0 are not
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recorded in this case because adding a new edge from v does not create a new
path of length 0).

In order to generate more efficient derivation trees, we have also written
REDUCER(¢) so that in the case where we have two paths of length 2 from
the same node in U; to different nodes in U; then the first half of these two paths
are merged. This results, in certain cases, in fewer symbol nodes in our GSS
than in the corresponding GSS produced with Algorithm le. Of course, there is
also an additional cost in that paths of length 2 from a given node have to be
searched to check whether their end nodes lie in the appropriate U;. In order to
properly compare our algorithm with Algorithm le, we have also implemented
another version of our REDUCER (%) which does not merge non-terminal symbol
nodes in this way. This version is given in Section 6.3.

The efficiency of the algorithm

On first inspection we might expect our new algorithm to be less efficient than
Tomita’s because, in general, there will be significantly more conflicts in the
underlying parse table. This could lead to more possibilities which need to be
investigated and hence to a larger GSS. However, we claim that the GSS con-
structed using our method is identical to that constructed using Algorithm le in
the cases where the latter algorithm works correctly.

Although, for right nullable grammars, there are more conflicts in the reduc-
tion modified table, these conflicts result only from moving the point at which a
reduction is applied. These reductions would have been applied in the original
case after some ‘shifting’ of e-matching non-terminals on to the stack, and with-
out consuming any further input symbols. Thus these conflicts do not cause any
additional reductions to be applied over and above what would have eventually
been done anyway. This point is illustrated further when we discuss the relation-
ship between reduction modified tables and LR(1) grammars in Section 6.5, and
is essentially a consequence of our proof of the correctness of our algorithm given
in Section 6.4 below.

Furthermore, the GSS construction process is more efficient in our case in
the sense that the amount of graph traversal needed to construct the GSS is less
when the grammar contains right nullable rules. This is because reductions via
rules of the form A ::= a8 where 3=¢ are applied down paths of length |a| rather
than paths of length |a/f|.

In Section 7 we shall give examples from real grammars such as a C grammar
and compare the effects of our algorithm with Algorithm le. In order to compare
like with like, we shall use a slightly different version of our algorithm in which,
as in Algorithm le, the symbol nodes corresponding to non-terminals are not
merged.

REDUCER(:) {
remove (v, X, m) from R
find the set y of state nodes which can be reached from v along a path of
length 2m
for each state node u € y do {
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let k& be the label of u and let gl be the entry in table(k, X)
if there is a node w € U; with label I {
if there is not a path of length 2 from w to u {
create a symbol node labelled X which is a successor of w
and a predecessor of u
if m#0 { for all (rj,t)in table(l, a;41) where t # 0
and B is the LHS of j, add (u, B,t) to R }
}

else {
create a new state node, w, in the GSS labelled [ and a new symbol
node, y, labelled X

make y a successor of w and a predecessor of u

add w to U;

if sh etable(l, a;41) add (w, h) to Q

for all reductions (rj,0) in table(l, a;4+1) add (w, B,0) to R where
B is the LHS of j

if m#0 { for all (rj,t)in table(l, a;41) where t # 0

and B is the LHS of j, add (u, B,t) to R }
}

}

}

The experiments demonstrate that the GSS constructed by our algorithm
with the above version of REDUCER(%) is the same size as that constructed by
Tomita’s algorithm and that the graph searching required to construct the GSS
in this case is less than is required for Algorithm le, for right nullable grammars.

Correctness of the algorithm

A language recognition algorithm is correct for a given context free grammar if,
given any input string, the algorithm terminates and reports success if the input
string is in the language generated by the grammar, and terminates and reports
failure otherwise.

Our proof of the correctness of our algorithm depends on the correctness of the
standard stack and table based parsing technique. We shall give a formal defini-
tion of what we mean by the language accepted by a (possibly non-deterministic)
table based parser, and we shall prove that, for all context free languages, our
algorithm (deterministically) accepts exactly the language accepted by the table
based parser.

We begin with a general definition of a parse table. We then define the
operation of a stack based machine with such a table on a given input string, and
then we define the language accepted by this machine. These definitions are just
extensions of the standard definitions for LR(1) tables to include tables which
may have conflicts and reductions applied on partially recognised handles.
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6.4.1 RM-Parse tables

A parse table, for a grammar I' whose rules are uniquely numbered, is a table
whose rows are labelled with a strictly increasing finite sequence of integers start-
ing from 0, and whose columns are labelled with the terminals and non-terminals
of the grammar together with the special end of file symbol $. The entries in the
table are sets of actions. These actions are of the form sk, gk, (rj, m), and acc,
where k is a row number, j is the number of a grammar rule and m is an integer
which lies between 0 and the length of the right hand side of j. Entries in columns
labelled with non-terminals can contain at most one element, which must be of
the form gk. Entries in columns labelled with terminals or $ can contain up to
one action of the form sk and arbitrarily many actions of the form (rj,m). In
the column labelled $ the entries can also contain the action acc.

We call the parse table constructed from a grammar I' using LR(1)-items in
the standard way the LR(1)-table for T'. For non-LR(1) grammars the LR(1)-
table will contain some entries with more than one action (usually referred to as
conflicts). In the LR(1) parse table all actions of the form (rj, m) will have m
equal to the length of the right hand side of j, so these are usually written just
as rj.

As described in Section 6.1, we define the reduction modified LR(1)-table (or
the RM-table) to be the table obtained by taking the LR(1) table and adding
extra actions of the form (rj, k) to the entry in position (%, a) of the table if the
DFA state h contains an LR(1)-item of the form (A4 ::= a - 3, a), where 3=¢, o
has length k, and A ::= af is rule number j in the grammar.

6.4.2 Table based parsers

We now define a (non-deterministic) machine which takes a parse table and an
input string and traverses the table according to the actions in the table entries.
This is just a straightforward extension of the standard LR(1) stack based parser
to include tables with multiple entries and reductions of length less than the
length of the right hand side of the reduction rule.

We define a table based parser to be a stack based machine with an associated
parse table which takes as input a string of symbols. Initially the stack contains
the label, 0, of the first row of the table.

At any step in an execution of the parser the stack will contain an alternating
sequence of row labels and column labels from the table, with 0 at the bottom
and row label at the top. An execution step consists of looking at the current
symbol, a say, in the input string and the integer, k say, on the top of the stack,
(non-deterministically) selecting an action from the set in position (h,a) of the
table, and carrying this action out.

If there are no actions in the set then the parser terminates and reports a
failure. If the action is acc then the parser terminates and reports acc. If the
action is sk then the parser pushes a and then k on to the stack and advances
the input pointer. If the action is (rj, m), where A is the symbol on the left
hand side of rule j, then the parser pops 2m symbols off the stack, reads the new
top-of-stack symbol, [ say, and then reads the entry in position (I, A) of the table.
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If there is no action in this entry then the parser terminates and reports failure.
If the action is gk then then parser pushes A and then k on to the stack.

An ezecution path of a table based parser for a given input string is a sequence
of execution steps which start with 0 on the stack and the input pointer at the
beginning of the string. A string u is accepted by a table based parser if, on input
u$, there is some execution path of the parser which results in the action ace.

An LR(1)-parser for a grammar I' is a table based parser whose associated
table is the LR(1)-table for I'. An RM-parser for I' is a table based parser whose
associated table is the RM-table for I'. We shall now show that the LR(1)- and
RM-parsers for a given context free grammar are equivalent in the sense that
they accept the same set of strings.

6.4.3 Equivalence of LR(1)- and RM-parsers

In order to prove that the LR(1)- and RM-parsers accept the same set of strings in
the case where the associated tables have been generated from the same grammar,
we need the following lemma, which addresses the behaviour of the LR(1)-parser
on right nullable rules.

Lemma 1 Suppose that there is a execution path of an LR(1)-parser which re-
sults in a stack of the form 0, x1, hi, 2, ho, . .. 24, by and the input pointer pointing
at symbol a. Suppose also that the state h, contains an LR(1)-item of the form
(A= a«- [, a), where f=¢. Then there are continuations of the execution path

1. in which the input pointer is not moved and the stack takes the form
07 T, h17 .. '7$q7 hq7 Y1, kh .. '7yp7 kp
where 3 =y ...yp, and

2. in which the input pointer is not moved and the stack takes the form
vahhh .. .7$i7h,’7A,h

where |a| = (¢ — 1) and the action in position (h;, A) of the LR(1)-table is
qgh.

Proof We prove part (1) by induction on the length of the derivation S=%¢, and
then we observe that part (2) follows directly from part (1).

Suppose first that n = 0, so § = €. Then the new stack is the same as the
original one, and part (1) is trivially true.

Now suppose that n > 1 and that the result is true for items of the form
(X == v-6,b) where 5% ¢ and d < n. Since n > 1 we must have § = y; 5’

where y; # € and y1:>7':d>67 where d < n. From the standard construction of the
LR(1)-DFA states, we have that h, must contain the item (y; = -7, a), and so,
by induction, we can extend the execution path so that the stack is of the form

7 7
0,21,h1,...,2q, 0y, 21, kY, ..., 20, K,
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where 7 = 21 ...z, without moving the input pointer. Also from the LR(1)-DFA
construction process we must have that k. contains the item (y; ::= 7+, a), hence
entry in position (k.,a) of the table will contain a reduction by this rule, and so
there is an execution step in which the input pointer is not moved and the stack
becomes

0,21,h1,...,2q, hg,y1, k1

where gk; is the entry in position (hq,y;) of the LR(1)-table. From the LR(1)
construction method we have that &y contains the item (A ::= oy, - ', a), where

B =yz...y,. We have ﬁ’:f>6 where 1 +d+ f = n, so f < n and, by induction,
we can extend the execution path so that the stack is of the form

07$17h17'"7$q7hq7y17k17"'7yp7kp

without moving the input pointer. This proves part (1).

Now, by part (1), without moving the input pointer we can extend the ex-
ecution path so that the stack is of the form in part (1). Since each y; is
a non-terminal and h, contains the item (A == a - y;...yp,a), the LR(1)-
DFA state construction process guarantees that h; will contain the item (A4 =
Qyi ... Yt - Yeg1---Yp,a). Thus position (kp,a) of the LR(1)-table will contain
the action to reduce by the rule A ::= . Thus there is an execution in which
the input pointer is not moved, 2(k — 7 4 p) symbols are popped off the stack,
and then A and the state h, such that gh is contained in position (h;,a) of the
LR(1)-table, are pushed on to the stack. This gives the stack

vahhh o .7$i7h,’7A,h
as required for part (2).

Theorem 1 For any context free grammar I', the LR(1)- and RM-parsers for
I’ are equivalent in the sense that they accept the same set of strings.

Proof  Since the LR(1)-table for T' is a subset of the RM-table for I' (all of
the actions in the LR(1)-table are also in the RM-table), for any execution path
through the LR(1)-parser there is an identical execution path through the RM-
parser. Thus any string accepted by the LR(1)-parser for I' will also be accepted
by the RM-table based parser for I'.

To show that any string which is accepted by the RM-parser for I' is also
accepted by the LR(1)-parser, we show that if, on input a;...a;41 there is an
execution path through the RM-parser which results in the stack

07$17h17...7$p7hp

and input pointer pointing at a;4q then there is an execution path through the
LR(1)-table based parser which results in the same stack and pointer position.

If the execution path is empty then both parsers have stack containing just
the state 0 and the input pointer pointing at the first input symbol, so the result
is true.
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Now suppose that the execution path in question consists of ¢ > 1 execution
steps and that the result is true for paths with less than ¢ steps. Suppose that
the first (¢ — 1) execution steps in the path resulted in the stack

07y17k17"'7yt7kt

with the input pointer pointing at b, and that at the last execution step the action
act was selected. If act is of the form sk then to arrive at the given stack and
pointer position, we must have b = a; and yy = 2, iy = hy for 1 <1 <t=p—1.
Otherwise, we must have b = a;41.

By induction we can assume that there is an execution path, on input a; . ..a,$,
in the LR(1)-table based parser which results in the stack

07y17k17"'7yt7kt

and the input pointer pointing at b.

If act was acc then the input pointer must have been pointing at a;y;, we
must have § = a;11 and, since acc does not alter the stack, y; = a1, k; = hy for
1 <1l <t=p. From the construction of the RM-table we must also have that
k¢ = hy, is the accepting state of the underlying LR(1)-DFA. Thus position (h,, $)
of the LR(1)-table will also contain the action acc, and the required execution
path exists in the LR(1)-table based parser.

If acc was sk then, as we have already noted, the previous step would have
been carried out on the stack

vahxh ce '7$p—17hp—1

with the input pointer pointing at a;. The action sh, would also be in position
(hp—1,a;) of the LR(1)-table, so the LR(1)-parser could also extend its execution
path in a way that results in stack

0,21,21,...,%p, Iy

and input pointer pointing at a,;41, as required.
Finally suppose that act was (rj,m), so that at the previous step in the
execution path the stack had the form

vahhh .. '7xp—17hp—17217gl7 ce oy Zms 9m

and the input pointer was pointing at a;+q. By induction, there is an execution
of the LR(1)-parser on the same input which results in the same stack and input
pointer position. Since the next step in the execution path of the RM-parser
results in the stack

07$17h17 . -7xp7hp

we must have that z, is the left hand side of rule j and that position (hp_1,a;41)
of the RM-table, and hence of the LR(1)-table, contains the action gh,. Fur-
thermore, by construction of the RM-table, the DFA state g, must contain an
item (z, = - 3, a;11), where |a| = m and 3=>¢. Then, by Lemma 1, there is a
continuation of the LR(1)-parser’s execution path with results in the stack

07$17h17...7$p7hp

and input pointer remaining at a;y1, as required.



GLR parsing with a modified DFA 49

6.4.4 Correctness of the GRMLR algorithm

We have already shown that an RM-parser accepts the same language as the
LR(1)-parser for the same grammar, and we assume that the latter accepts pre-
cisely the language generated by the underlying grammar. The problem is that
both of these machines are, in general, non-deterministic; for a given input string
we cannot tell whether there is an execution path of the machine which results
in acc.

We define a determining algorithm for a table based parser to be an algorithm
which determines whether or not, given a grammar and an input string, there is
an execution path through the table based parser which results in acc.

Tomita’s Algorithm 2 was designed to be an LR(1)-table determining algo-
rithm, but it fails to terminate on grammars with hidden left recursion. Algo-
rithm le was also designed to be an LR(1)-table determining algorithm, but the
problem here is that with certain grammars which contain right nullable rules
Algorithm le erroneously reports that no execution path exists.

We define a determining algorithm to be correct for a table based parser if,
given any input string, it terminates and reports success if there is an execution
path of the table based parser which reports acc, and terminates and reports
failure otherwise. It is believed that Tomita’s Algorithm 2 is correct for LR(1)-
parsers whose tables have been generated from grammars without hidden left
recursion, and that Algorithm le is correct for LR(1)-parsers whose tables have
been generated from grammars without right nullable rules. We shall prove that
the GRMLR algorithm given in Section 6.2 is a correct determining algorithm for
RM-parsers whose associated tables have been generated from any context free
grammar.

The problem with Tomita’s Algorithm 2 is that it fails to terminate in certain
cases. It is also true that Aycock and Horspool’s algorithm fails to terminate on
grammars which contain hidden left recursion [AH99]. We begin by proving that
the GRMLR algorithm terminates for all RM-parsers and all input strings.

Lemma 2 For all context free grammars, the GRMLR algorithm given in Sec-
tion 6.2 terminates for all input strings.

Proof We suppose that the algorithm is using an RM-table with N rows (states),
constructed from a context free grammar I', and that the input string is a; . . . a,.

First we calculate an upper bound on the size of the GSS.

Each set U; of level ¢ nodes has only one node labelled with each state number,
so it contains at most N nodes. Thus the GSS contains at most (n 4+ 1)N state
nodes. All edges from a node u € U; are the first edge in a path of length 2 to a
node in some U; where j < ¢. At most one edge is added from a node u € U; by
the SHIFTER, all other edges are added by the REDUCER and this checks for
the existence of a path of length 2 before adding the edge. Thus there is at most
one path of length 2 from U; to each of the (¢ + 1) N nodes in the U; with j <.
Thus there are at most (¢ + 1) N edges from each node in U;, and hence there are
at most (i + 1)N? symbol nodes which are successors of nodes in U;. So the GSS
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contains at most

<§n3<i+1>N2> + (n+1)N = ("‘|‘1)((n+22)N2+2N)

=0

nodes (state and symbol nodes).

The GSS is a bipartite graph and every edge has a symbol node either as its
source node or its target node. The GSS construction guarantees that symbol
nodes have only one predecessor, so there are as many edges whose target is a
symbol node as there are symbol nodes. All the edges from a given symbol node
are guaranteed to have target nodes in the same Uj, thus each symbol node is the
source node of at most N edges. Thus the GSS contains at most the following
number of edges.

(N+1)(§nj(i+1)N2) _ (n—l—l)(n—l—;)N (N +1)

=0

The for loops in REDUCER(?) iterate over finite sets which are not modified
during the execution of the loop, thus this function will always terminate. The
for loops in SHIFTER(:) iterate over table entries, and these are fixed. The
while loop in SHIFFTER(7) removes an element from @ at each iteration, and
doesn’t add any elements to (), thus SHIFTER(¢) always terminates. So to show
that the algorithm always terminates we need to show that the while loop in
the function PARSER terminates for each value of i. Each time REDUCER()
executes it removes an element from the set R of pending reductions. Looking
at the structure of REDUCER(z), we see that it only adds elements to R when
a new edge is created in the GSS. We have already seen that there can only
be a finite number of edges in the GSS, so REDUCER(¢) must eventually stop
adding elements to R, but continue removing one each time it is executed. Thus,
eventually, we will have R = () and the while loop will terminate, as required.

In order to show that the RM-table determining algorithm given in Section 6
accepts precisely the language accepted by the RM-table (and hence by Lemmal
the LR(1)-table) based parser, we need the following lemma which addresses the
impact of nullable non-terminals on the GSS and on the parse table.

Lemma 3 If there is a path
v u w
O——®
in the GSS constructed with an RM-table and input ay ...a,, n which w and
v lie in the same U;, then x=>¢. Furthermore, the state h in the LR(1) DFA
contains an item (x ::= -y, a;11), where y=>¢. Hence the RM-table contains the

element (rf,0) in position (h,a;y1), where f is the rule x ::= v, and position
(h,z) contains the element gk.

Proof  Since w,v € Uj, the edge (u,v) must have been constructed as a result
of processing a reduction (v', 2, m), where there is a path of length 2(m — 1) (or
of length 0 if m = 0) from v’ to u,
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W1
N ® - ®"

and we must have that position (h,z) of the RM-table contains the element gk.
Looking at REDUCER(7) and SHIFTER(¢) we see that for (v/, 2, m) to be in
R at this point we must have either that

@’O...

1. (rf,0) lies in position (kp,, ai+1) of the RM-table, where f is a rule of the
form z =, s0 m =0, v/ = v, ky, = h, and y=¢, or

2. there is a node z,, € U; with label k,,, such that there is a path of length 2
from z,, to v" and (rf, m) lies in position (kn, a;4+1) of the RM-table, where
f is a rule of the form 2 ::=yy ...ym 3, and f=e.

@’O...

v U w
h o |
O l_lul @zl Us v' = Zmo U, Zm
R e O T R G T ®
Each of the nodes z4 must lie in U; for some 7 < 4. Since v € U; and there is a
path from each of these nodes to v, in fact they must all lie in Uj.

We now prove the results by induction on the order in which the edges in the
GSS were created.

If (w,u) and (u,v) are the first edges created then v = vy and w € Uy. Since
there are no paths in the GSS before this one is created, we must be in Case
1 above, x=v=¢, and (rf,0) lies in position (0,a;). Thus, by the RM-table
construction rules, we must have (2 ::= -y, ay) in state 0.

Now suppose that the result is true for edges which were created before (u, v).

If (v, 2, m) falls in to Case 1 above, then we have 2=vy=>¢ and (rf,0) lies in
position (0, a;11). So we must have (2 ::= -y, a;41) in state h, as required.

If (v/, 2, m) falls in to Case 2 then all of the edges (ug4, zq—1), where 1 <d < m
and zg = v, were created before the edge (u,v), and so, by induction, yq=e for
1 < d < m. Thus we have 2=y ...ynf=¢, and since (rf,m) lies in posi-
tion (kp,,a;y1) of the RM-table, k,, contains the item (z == y1...ym - 3, Git1)-
Then, by the correspondence between paths of length 2 in the GSS and transi-
tions in the LR(1) DFA, we have that k4_1 contains the item (& == y1...Y4-1 -
Yd - - -Ym¥P, aix1). Thus h = ko contains the item (z = -y1...ynyf, a;41) and
Ui ... Ymy =€, as required.

Theorem 2 Given any context free grammar I' and any input string, u, the
GRMLR algorithm given in Section 6.2 terminates and reports success if there is
an execution of the LR(1)-parser for I' which results in acc, and terminates and
reports failure otherwise.

Proof From Theorem 1 it is sufficient to show that the GRMLR algorithm
terminates and reports success if there is an execution of the RM-table based
parser with results in acc, and terminates and reports failure otherwise. We have
already shown that the algorithm always terminates, so we need to show that it
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reports success on input u if and only if the there is an execution path through
the RM-parser which results in acec.

Let G be the GSS constructed from the RM-table for I' and input a; ...ay,
let ap,11 = $, and let vy be the base node of G, the first node constructed.

(=): We suppose that the GRMLR algorithm reports success. We shall show
that, if there is a node v € U; and a path

v Uy

Vo Uy U1 U2 g—1 v
(O R () R ) SR s R

in G then there is an execution path through the RM-parser on input a; ...an41
which results in the stack

07$17h17...7$q7hq

and input pointer pointing at a;41. Then, since the GSS reports success, there is
a node v, € U,, whose label, h,,, is the accept state of the RM-table. Thus there
is an execution path through the RM-parser which results in h,, on the top of
the stack and the input pointer pointing at a,y; = $. Since acc lies in position
(hn, $) of the RM-table, this execution path can be extended to result in acc.

The proof is by induction on the order in which the edges in G are created.

If the path from v under consideration has no edges then we must have v = vg
and ¢ = 0. The start configuration of an RM-table based parser ensures that there
is an (empty) execution path which results in 0 on the stack and the input pointer
pointing to a1, so the result is trivially true.

Now suppose that the edge (u;,v;_1) was the last of the edges in the path
to be created and suppose that the result is true for all nodes and paths which
contain only edges created before (u;,vj_1).

If the edge (u;,v;_1) was created by the SHIFTER then, since it was the last
edge in the path to be created, we must have j = ¢, vy—1 € U;_; and sh, must be
an entry in position (hg_1,a;) of the RM-table. Then, since all the edges on the
path from v,_; to vy were created before the edge (uq, v4—1), by induction there
is an execution path through the RM-parser on input a; ...a,4+1 which results in
the stack

07 T, h17 sy g1, hq—l

and input pointer pointing at a;. Since the action shy lies in position (hq—1, a;)
of the RM-table, this execution path can then be extended to give the stack

vahhh ce '7xq—17hq—17$q7hq

leaving the input pointer pointing at a;41.

Now suppose that the edge (u;,vj_;) was created by the REDUCER. Since
this is assumed to be the last edge created and since v, € U;, this edge must have
been created by REDUCER(¢) while processing an element (v, 2, m) and there
is a path

Yo U1 U1 U p‘] 1 U

U
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in G. Looking at REDUCER(¢) and SHIFTER(7) we see that for (v', 2, m) to

be in R at this point we must have either that

1. (rf,0) lies in position (k,, aj1+1) of the RM-table, where fis a rule z; ==+,
som =0 and v’ =vj_y, or

2. there is a node w € U; with label k,,, such that there is a path of length 2
from w to v’ and (rf, m) lies in position (k,, @;+1) of the RM-table, where
f is a rule of the form z; ::= oy and |a| = m.

:UO u1 .U1 U2 % U
H

In Case 1, by induction, there is an execution path through the RM-parser on
input @y ...a,4; which results in the stack

vahhh .. '7$j—17hj—1

without moving the input pointer. Since (rf,0) lies in position (hj;_y,a;41) of
the RM-table, there is a continuation of the execution path which results in the
stack

07 T, h17 sy i1, hj—h Ty, h]

without moving the input pointer. In Case 2, since all of the path from w to v;_;
was created before the edge (u;,v;_1), by induction, there is an execution path
through the RM-parser on input aj ...a,41 which results in the stack

vahhh .. -7$]‘_1,h]‘_17y17k17 . '7ym7km

and input pointer pointing at a;41. Since (rf, m + 1) lies in position (I, a;41) of
the RM-table, there is a continuation of the execution path which again results
in the stack

07 T, h17 sy i1, hj—h Ty, h]

without moving the input pointer.

From the operations in REDUCER(¢) we see that we must have v; € U;, and
hence vg € U; for j < d < g. Then, by Lemma 3, the RM-table contains entries
(rfa,0) in position (hg—1,a;4+1), where fy has left hand side x4, and position
(hd—1,%q) contains the element ghg. Thus we can continue the above execution
path to generate stacks

vahhh .. '7xj—lvhj—lvxjvhj7xj+17hj+l
0,21, hay oo @ggr, ljr, @jgo, Ryjpo
07$17h17 . -7$q7hq

without moving the input pointer, as required.
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(«<): We suppose that there is an execution path through the RM-parser which
results in acc. We shall show that, if there is an execution path through the
RM-parser on input @y ...a,4; which results in the stack

07$17h17...7$q7hq

and input pointer pointing at a;41, then there is a node v € U; and a path

Vo U1 U1 U Ug—1 Ug v
G — O ®

in G. Then, since the RM-parser results in acc, there is an execution path through
the RM-parser which results in h,,, the accept state, on the top of the stack and
the input pointer pointing at a,11 = $. So there is a node v,, € U,, whose label
is h,, and the GRMLR algorithm will report success.

We prove the result by induction on the number of execution steps in the
execution path.

When the execution begins, the input pointer points at ¢ and the stack just
contains the start state, 0. The GSS has base state vy € Uy, and clearly there is
a path of length 0 from vy to itself.

Now suppose that it takes M execution steps to result in the stack

vahhh ce '7xq—17hq—17$q7hq

and input pointer pointing to a;41, and that the result is true for execution paths
which contain fewer than M steps.

If the last execution step, the one which resulted in the given stack and
position, was a shift action, then it must have been sh,, this action must lie in
position (R, ,a;) of the RM-table, we must have z, = @;, and the stack must
have been

07 T, h17 sy g1, hq—l

By induction, there is a path in the GSS from a node vy_; € U; to the node
vg. If ¢ = 1 then sh, is added to ) at the start of the algorithm. Otherwise,
shy is added to () when the node v,_; was created either by the REDUCER or
the SHIFTER. Then, when SHIFTER(?) is executed, the node v, and a path of
length 2 from v, to vy—; will be created, as required.

Now suppose that the last execution step was a reduction, so that the stack
was of the form

vahhh .. '7$q—17hq—17y17k17 .. '7ym7km

with the input pointer pointing at a;1;. Thus (rf, m) lies in position (k,, @i41) of
the RM-table, where fis 2, ::= y1 .. .ym0, =>¢€, and ghy lies in position (hy_1, ,)
of the RM-table. By induction, there is a path in the GSS

Yo Uy U1 Yg—1 w1 Wm—1 Wain
O —FF—) - A ) ()

with w,, € U;.
If vy—1 € U; then all of the state nodes from w,, to vy—; must also be in

U;. Hence, by Lemma 3, we must have yg=¢, for 1 < d < m. Since the item
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(Tg = Y1 ... Ym -0, a;41) lies in kyy, the item (24 ::= Y1 ... Ym0, a;41) lies in hy_yq
and thus (rf,0) lies in position (hg—1,a,41) of the RM-table. Looking at the
GRMLR algorithm, we see that when the node v,_; was created, the pending
action (vg—1,24,0) would have been added to R. Since v,_q € Uj, this action
would be removed from R during the i** step of the GSS construction. When this
action was removed from R, a node v, € U; labelled h, and the path vy, uq, v4—1
would have been added to the GSS if they were not already there. Thus there is
a path from v, to vg, as required.

Now suppose that w,_1 ¢ U; and that wg € U; for d > p (here vy_y1 = wy).
We may assume that 1 < p < m. By the same reasoning as above we have that
(rf,p) lies in position (kp, a;4+1) of the RM-table. If the path

p—1 Wp
& w6

was created by the SHIFTER then, since w, € U;, it must have been created by
SHIFTER(¢ — 1). Since (rf,p) lies in position (k,, a;41) and p > 1, (wp_1, 24, p)
would have been added to R by SHIFTER(: — 1). If this path was created by
the REDUCER, it must have been REDUCER(7). For REDUCER(?) to create
the above path of length 2 to v,_; it must be processing a reduction of the form
(v',2p, m') and there must be a path of length 2(m’ — 1), or length 0 if m’ = 0,
from v’ to w,_;. If m’ = 0 then we must have v’ € U; and w,_; = v’, which
is contrary to the assumption that wp,_y ¢ U;. Thus we must have m' # 0 and
(wp—1, x4, p) would have been to added R by REDUCER(¢). Thus, in either case,
when the element (w,_1, 24, p) was removed from R for processing, a node v, € U;
labelled %, and the path vy, u4,v4—1 would have been added to the GSS if they
were not already there.
This completes the proof.

The reduction modified DFA and LR(1) grammars

In this section we shall study the conflicts that can arise in a reduction modified
table generated from an LR(1) grammar. We shall show that, as long as the
grammar is LR(1), such conflicts can be resolved by removing multiple reductions.
As a side effect, if the correct reductions are removed, the resulting algorithm is
slightly more efficient in the sense that there is a slight reduction in stack activity.
We begin with two lemmas on the nature of DFA states which contain right
nullable items. These lemmas will be required in the subsequent proofs.

Lemma 4 If a DFA state h contains an item of the form (A ::= «-Df3, a) where
Dﬁé}e, for some non-terminal, Z, D = Z=¢, and for all such Z, h contains
the item (Z = -, a).

Proof If Dﬁé}e then D £ ¢, for some p > 1. If p = 1 then we can take Z = D.

If p > 2 then we have D=Cv sl €, s0 C' = ¢ for some ¢ < p — 1 and, by the

construction of DFA states, (D -C'y, a) lies in h. Thus, by induction, there exists
some Z such that C = Z=>e. Since y=>¢, we have D=Cy = C = Z=¢, as
rm rm rm

required.
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Now suppose that Z is a non-terminal such that D = Z=v¢, where ¢ > 0.
rm

If ¢ = 0 then Z = D and, by construction of the DFA states and since f=>¢,
(D ::=-,a) lies in h. Now suppose that ¢ > 1 and that D=C~ G Z—e. Since

this is a rightmost derivation and Z is a non-terminal, we must have C LY Z,
rm

where & < ¢ — 1. By the DFA construction process, we have that (D - C~,a) lies
in h. So, by induction, (Z ::= -, a) lies in h, as required.

6.5.1 The correctness of reduced RM-tables for LR(1) grammars

In this section we shall examine the properties that RM-tables have when the
grammar is known to be LR(1), we shall define the concept of a reduced RM-
table, and we shall we prove that the table based parser which uses a reduced
RM-table defined above is correct for LR(1)-grammars.

We suppose that we have an RM-table which is constructed from an LR(1)-
grammar, I', so that there are no conflicts in the LR(1)-table.

Lemma 5 IfT' is an LR(1) grammar then the RM-table for I' cannot contain
any shift/reduce conflicts.

Proof  Suppose that position (h,a) of the RM-table contains a shift/reduce
conflict, sk and (rf, m) say. From the RM-table construction we must have that
the DFA state h contains items of the form (X ==« -af,b) and (Y =:=71-0,a),
where |7| = m and o=e.

If 0 = € then this conflict would also appear in the LR(1)-table, contrary to
the assumption that I' is LR(1).

If o # € then we have 0 = Bjoy, where Blé}e and o1=e¢. Then, by Lemma 4,

h contains an item of the form (Z ::= -, a) and there would be a conflict in the
LR(1)-table. Thus the RM-table cannot contain a shift/reduce conflict if T' is
LR(1).

Definition A reduced RM-table is a table obtained by removing some, but not
all, of the reductions from the entries in the RM-table.

From Lemma 4 we see that if an entry in an RM-table contains a reduction
then it contains an LR(1) reduction, thus the LR(1)-table is a reduced RM-table
obtained by simple removing all the non-LR(1) reductions. In Section 6.5.2 we
shall prove a lemma which describes the relationship between reductions in the
same entry of an RM-table and use this to select which reduction to retain,
removing all the others so that the table becomes conflict-free. Before we do
this we prove the following theorem, which shows that reduced RM-parsers are
correct for LR(1)-grammars.

Theorem 3 IfT' is an LR(1) grammar then the language accepted by a reduced
RM-parser for I' is precisely the language generated by I

Proof  Suppose that the input string w is accepted by a given reduced RM-
parser. The reduced RM-table is a subset of the RM-table so the execution path
which results in acceptance is also an execution path through the RM-parser.
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Then, by Theorem 1, u is accepted by the LR(1)-parser and hence is in the
language generated by I.

Conversely, suppose that v = ay...q, is in the language generated by I.
Then u is accepted by the LR(1)-parser for I'. We shall show, by induction on
the length of the execution path, that if there is an execution path, © say, through
the LR(1)-parser on input w which results in the stack

vahhh B '7xm7hm

and the input pointer pointing at a,41, then there is a (possibly trivial) extension
of this execution path, ©’, which results in the stack

072’17117...72’137113

and the input pointer pointing at a;41, such that there is an execution path, ¥,
through a given reduced RM-parser which results in the same stack and input
pointer position.

The result follows from this because, since u is accepted by the LR(1)-parser,
there is an execution path through this parser which results in a stack with the
accept state on top and the input pointer pointing at $. Since the grammar is
LR(1), there is no non-trivial extension of this execution path, so there must be
a path through the reduced RM-parser which results in the same stack and input
pointer position, hence it will also accept u.

If the execution path through the LR(1)-parser has length O then the stack
just contains the start state and the input pointer points to ay. Clearly, the zero
length execution path through the reduced RM-parser results in the same stack
and input position, thus we can take the trivial extension of the execution path
through the LR(1)-parser.

Now suppose that we have a given execution path, ©, through the LR(1)-
parser which results in the stack

vahhh B '7xm7hm

and the input pointer pointing at a;41, and that for all execution paths of shorter
length there is an extension and a corresponding path through the reduced RM-
parser which result a common stack and the input pointer still pointing at a;41.
If the last step in the given execution path © was a shift action then we must
have that the execution path, @1, up to the point of this last step resulted in the
stack
07 T, h17 vy Tm—1,y hm—l

with the input pointer pointing at a;, and that position (hy,—1,a;) of the LR(1)-
table contained the action sh,,. By induction there is an extension, O/, of ©; and
an execution path, Wy, through the reduced RM-parser which result in a common
stack and the input pointer pointing at ;. Since the grammar is assumed to be
LR(1), the only execution step which can be taken from state hy,,_; with input
a; i8 shy,, which will advance the input pointer. Thus the extension of this path
must be the trivial extension, so ©] = ©1, and so ¥; must result in the stack

vahhh B '7$m—17hm—1
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with the input pointer pointing at ;. The shift actions in the reduced RM-table
correspond exactly to the shift actions in the LR(1)-table, so position (hn,—1, ;)
of the reduced RM-table contains the action sh,,. Thus ¥; can be extended to
result in the stack

vahhh .- '7xm—17hm—17ai - xm7hm

and the input pointer pointing at @;41.

Finally suppose that the last step in the given execution path through the
LR(1)-parser was a reduce action, so we must have that the execution path, 0,
up to the point of this last step resulted in the stack

vahhh .. '7$m—17hm—17y17k17 .. '7yq7kq

with the input pointer pointing at a;41, that position (kg, a;11) contained the
action rj, where j is the rule z,, ==y ...y,, and that position (hy,_1, 2,,) of the
LR(1)-table contained the action gh,,. Position (k4 a;41) of the RM-table for T'
contains the action (rj,¢), so this entry in the reduced RM-table must contain
an action of the form (ri,t) where ¢ is a rule of the form Z = ~4§, |y| = ¢, and
S=e.

Now, by induction there is an extension, 0/, of ©; and an execution path, ¥y,
through the reduced RM-parser which result in a common stack and the input
pointer pointing at a;y1. If this extension is non-trivial (i.e. includes at least
one additional execution step) then, since the grammar is LR(1), ©] is also an
extension of O, and we can take ¥ = ¥y, giving the result. Thus we assume that

! = ©1 and thus that ¥y results in the stack

vahhh .. '7$m—17hm—17y17k17 .. '7yq7kq

— 07217117"'7Zp—lvlp—17wlvgl7"'7wtvgt

with the input pointer pointing at a;y1. We can extend ¥y to ¥ by performing
the reduction (r¢,t) which results in the stack

07217117 ce '7Zp—lvlp—17Z7 lp

where position (I,_1, Z) of the reduced RM- (and the LR(1)-) table contains the
action ¢l,. By Lemma 1 there is an extension, ©’, of ©; which results in the
same stack. Since I' is LR(1) there is a unique next execution step from each
execution path through the LR(1)-parser, thus ©' must also be an extension of
0O, as required.

Note The above theorem actually shows that although the RM-table for an
LR(1) grammar may contain conflicts it doesn’t matter which of the conflicting
reductions is chosen, the parse will be successful if the input string is in the
language.

6.5.2 Resolved RM-parse tables

In this section we shall describe the relationship between reductions in the same
entry of an RM-table, and show that there is a base reduction which is generated
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by the other reductions. We shall then give an example which compares an
LR(1)-parser with the (deterministic) reduced RM-parser obtained by retaining
the base reductions and removing all other conflicting reductions.

Lemma 6 Suppose that T' is an LR(1) grammar and that h is a state in the
LR(1) DFA for T' which contains an RM-table reduce/reduce conflict, then h
contains an item of the form (Y == 1 -Co,a), called a base item, such that

CoLe and for all other items (Z ::=~ -8, a) in h, with 6=¢, C = Z and v = e.

Proof  Suppose that the DFA state h contains two items of the form (X =
a-fB,a) and (Z :::7-5,@),Whereﬁ%6and 5%6. If m =n =0 then T is
not LR(1), thus without loss of generality we may suppose that m > 1. We shall
prove, by induction on m + n, that v = € and that § = Br, where B %@ Z. We
shall then show that the result follows from this.

Since m > 1 we have § = BT where BZe. Also, by Lemma 4, there is a
non-terminal D such that B %@ D and (D ::=-,a) lies in h. Furthermore, either

B = D or there is some non-terminal E such that B %@ E=Dv, where v % €
and 0 < ¢ < m. Then the item (E ::=-Dv, a) lies in h.

If n = 0 then 6 = € and so, since the grammar is LR(1), to avoid a re-
duce/reduce conflict in h we must have Z = D and v = e. Thus the result is true
for m +n = 1, and for all values of m 4+ n when n = 0.

Now suppose that n > 1, and that for any DFA state & which contains two

items (X' n=a'- ' a’) and (Z' :=+"-§',a’), where 3 2 ¢, § & ¢, m’ > 1 and
rm rm
m' +n' < m+n, then v/ =€ and ' = B'7/, where B’ = 7.
rm
Since n > 1 we have § = Co where C=pu = ¢, and p < n. By construction
rm

of the DFA states we have that (C' ::= -u,a) lies in h and m + p < m + n, so,
by induction, B %@ C and p = e. But then, since I' is LR(1) and (C' ::= -, a) and
(D ::=-,a) both lie in h, we must have C'= D.

From the DFA construction, there is a state & which can be reached from h
via a transition labelled D, and k contains (Z ::=+D-0,a) and (X == aD-1,a),
ift B= D, or (E == D-v,a). Furthermore, o 7%% €, T %; € and v % €, where
n’ < nand m',q¢ < m.

If (E:=D-v,a) € h)and n'+¢ > 1, then by induction either D or vD must
equal e. This is a contradiction. Thus we must have n’ = ¢=0and v = 0 = e.
But then, since I' is LR(1), we must have £ = Z and v = ¢, so B %@ Z, as
required.

If (X :=aD-o,a) € k then, again, by induction we must have n’ =m’ =0
and 7 = ¢ = €. In this case, since we assumed that the original items were
distinct, & contains an LR (1) reduce/reduce conflict, contrary to the assumption
that T' is LR(1).

Finally we need to show that h contains an RM-table reduce/reduce conflict
then h contains a base item, as defined in the statement of the lemma. If &
contains two distinct items of the forms (Y ©:= 7., a) and (X = -3, a), where

p=¢ and 3=¢, then, since T' is LR(1) we may assume that u # €. So p = Coe.
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But then by the above argument, for any other item (Z ::=+-4,a) in h, we must
have v = € and C' = Z, as required.
rm

Definition If I' is an LR(1) grammar we define resolved RM-table for I' to be
the reduced RM-table obtained by taking the RM-table for I' and resolving the
reduce/reduce conflicts, if there are any, by selecting a base item (X = a -, a)
and removing all other reductions in that entry of the table.

By Theorem 3 we see that a resolved RM-parser is correct for any LR(1) grammar.
A resolved RM-parser is also clearly deterministic for LR(1) grammars. Finally,
although we do not show it here it is not hard to see that the resolved RM-parser
is the most efficient reduced RM-parser in the sense that it induces the least stack
activity. We illustrate this with the following example.

S = S

S = dAle
A == BBC|b
B = CC

C = €

(r6,0) (r3,2) gl

(16,0) (15,1) g3
g2 | g4

acc

(r6,0) (r5,0) (r3,0) (r1,1) ST | g6 | gb | gd

OO~ | O | W N RO
—
[
D
<<
S’
—
I
(S
<<
—
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o
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S’
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LR(1)-parse table

$ a | b|A|B|C|S
0| 2 |s9 g9
1| 13
2| 16 gl
3| 15
4| 16 g3
5| 16 g2 | g4
6| rl
7| r4
8 | acc
9| 16 s7T | g6 | gh|egd

resolved RM-parse table

$ a|b|A|B|C|S
0| (12,0) | =9 20
1] (r3,3)
> | (13,2) gl
3| (15,2)
4] (15,1) g3
5 ((r3,1) g2 | g4
6| (r1,2)
7| (14,1)
8 acc
9| (r1,1) s7 | g6 | gh| g4

We use the LR(1)-table and the resolved RM-table to parser the input string a,
showing that the resolved RM-parser requires much less stack activity.

LR(1)-table resolved RM-table

stack input next stack | input next
pointer | action pointer | action

0 a s9 0 a s9

0a9 $ r6 0a9 $ (r1,1)

0a9C4 $ 6 0S8 $ acc

0a9C4C3 $ 5

0a9B5 $ r6

0a9B5C4 $ r6

0a9B5C4C3 $ 5

0a9B5B2 $ r6

0a9B5B2C1 $ r3

0a9A6 $ rl

0S8 $ acc
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7 Experimental results

7.1

We have implemented Algorithm le and our GRMLR algorithm (with the slight
modification described in Section 6.3), and we have run these algorithms on
several test grammars. In this section we shall describe these experiments and
discuss the results.

The aim of this report is to explore the theoretical aspects of Tomita-style
GLR algorithms in a way which allows feed-back into improvements in the algo-
rithms and which illuminates implementation. Our discussion in this section is
intended only to illustrate the effects of our modifications with explicit examples.
Thus we shall not discuss here the actual implementations or the many imple-
mentation issues which needed to be addressed. However, the implementations
form part of the GTB toolset which can be downloaded from

http://www.cs.rhul.ac.uk/research/languages/index.shtml

The GTB input and output files for the examples discussed in this section can
be found in the GTB version 1.0 distribution.

The experiments

We have run both Algorithm le and our GRMLR algorithm on a grammar for
ANSI-C, a grammar for (a slightly extended) level 0 ISO-Pascal, and on four ‘toy’
grammars which feature right-nullable rules. In all cases we have used the LR(1)
table as the basis of the algorithms, but our parser generator tool (GTB) can be
configured to generate and use LR(0), SLR(1) or LALR tables if preferred.

The aims of our experiments were firstly to test the practicality of the Tomita
approach, secondly to test the effects of our GRMLR algorithm, and thirdly to
compare our GRMLR algorithm with Tomita’s original algorithm.

The first aim was addressed by using grammars for the real languages ANSI-
C and Pascal. In both cases the grammars were specified in BNF, because at
the moment our generalised parser generators have not been extended to accept
EBNF. We were interested in the sizes of the graph structured stacks generated
and the amount of effort required to build them. Thus the output of the ex-
periments includes the number of nodes of each type in the final GSS, and the
number of times each of these nodes is visited during the construction. For both
C and Pascal the parsers generated were run on a large input program file.

The second and third aims were combined and then de-composed into two
parts: checking that the GRMLR algorithm could handle right-nullable gram-
mars, and considering the potential decrease in efficiency that might be intro-
duced because of the increased number of conflicts in the underlying parse table.

To look at the effect of the two algorithms on right-nullable grammars we
looked at four small examples. The first two

S = aAAA|e S = aSAAA|e€
A = ale A = ale

contain a relatively large amount of right-nullability and ambiguity. The second
also contains hidden right recursion. However, both of them are correctly parsable
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using Algorithm le. The third,

S == aDad | BDab
D = aAB

A == aBB|e¢

B = ¢

is parsable with Algorithm le if the nodes in the U; are processed in a certain
order but not if they are processed in a different order, see Section 4.5. Our
implementation of Algorithm le has been set up to process the nodes in an order
which shows the failure. (Note, this grammar does not contain hidden right
recursion.) The fourth grammar, below, is not parsable by Algorithm le at all,
see Section 4.4.

S = DbA
A = aAB e
B = ¢

As for the potential increase in efficiency of our GRMLR algorithm, the con-
cern comes from the fact that there are more conflicts in the parse table (although
no more states) and that this may lead to more states in a given U; in the GSS,
and hence to a larger and less efficient structure. In fact we claim that the GSS
constructed by our (slightly modified) method is identical to the GSS constructed
by Algorithm le in the cases where Algorithm le works. Although there are more
conflicts in the table, for a given input string the same number of conflicts are
encountered, it is just that some of them are encountered earlier in the stack con-
struction process. Furthermore, when right-nullable reductions are applied only
the non-nullable left portion of the rule is retraced, so the length of path traversed
in the GSS when performing such a reduction is less than for Algorithm le. So our
construction method is in fact slightly more efficient! We illustrate these effects
by counting the numbers of nodes and edges in the GSSs constructed by each
algorithm, and observing that they are identical, and by counting the number
of node visits made by each algorithm and observing that in cases where there
are right nullable rules this number is lower for our GRMLR algorithm than for
Algorithm le.

All our experiments have been run on a 400MHz Pentium II processor with
128Mbyte RAM using GTB version 2.00 compiled using Borland C version 5.1

7.2 The results
Experiment 1: ANSI-C

Aim: Parse the source code for Quine-McCluskey minimiser ‘bool” [Joh93] using
ANSI-C grammar from [KR88].

The grammar is modified to allow the lexer primitive to match one or
more ‘STRING’ keywords so as to model ANSI-C automatic string concatenation
which is usually handled in the lexer.
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Preparation:

1. Remove preprocessor lines and comments from bool source by passing through
the Borland 5.1 standalone preprocessor.

cpp32 -P- bool.c

2. The preprocessor leaves #pragma lines in the expanded code marking file
inclusion boundaries. A side-effect of the preprocessor is that many blank lines
are left in expanded source code.

Manually remove #pragma lines (8) and blank lines from bool.i

3. Borland C version 5.1 standard library headers contain some non-ANSI-C
syntax.
Manually remove lines from Borland header files: leaving 796 lines

4. Produce ‘lexicalised’ source by replacing integer constants with the keyword
INTEGER, identifiers by ID etc, using an RDP generated C pretty printer with
-L (lexicalise) option.

pretty_c -L bool.i > bool.str

796 lines, 4921 tokens, average of 5.39 tokens per line. (Note: original source
shows 3.83 tokens per line showing effects of comment and blank line removal.)

5. Create C_tomita.gtb and C_null.gth each with ten calls to the tomita_1 (Al-
gorithm le) and tomita_1_nullable_accepts (GRMLR) parsers respectively.

Experimental runs:
The first run below is the Algorithm le running on the ANSI C grammar, the
second run is the GRMLR algorithm.

gtb -T70000 C_tomita.gtb
1r(1) parse table requires 285723 cells: 421 cells have conflicts

gtb -T70000 C_null.gtb
1r(1) parse table requires 285723 cells: 421 cells have conflicts

Run times, showing non-linearity in memory allocation subsystem:

run no. 1 2 3 4 5 6 7 8 9 10
time 1.18 | 1.19 ) 1.18 | 1.18 | 1.19 | 1.36 | 1.52 | 1.86 | 2.02 | 3.03

Each run of the parser creates a new copy of the GSS data structure each of
which contains more than 100,000 nodes and edges. After the fifth run we see
that parse times begin to increase. This effect is generated by non-linearities in
the memory allocator for Borland-C: heap fragmentation has been observed to
generate at least quadratically increasing allocation times in other applications
once a certain level of allocation has been reached. We should stress that this
behaviour is not a side effect of page swapping since system monitoring shows
that the whole set of GSS’s fits into physical memory and no swapping occurs.
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Tomita-style parsers must, of course, necessarily create large structures when
parsing long strings. The rather few reports of Tomita-parsing performance in
the literature usually ignore the impact of allocating such structures on the parser
run time, possibly because typical Tomita applications are in natural language
parsing where the strings are often very short by our standards.

Although this table illustrates difficulties with the Borland-C allocater, it is
not unusual for other C runtime libraries to display such behaviour. In a better
behaved implementation, we would preallocate memory based on string length.
In the rest of this report, we have selected experiments in which the GSS’s never
grow large enough to trigger this behaviour.

The first table below shows the size of the GSS generated by each of the
algorithms. We note that the numbers are the same for each algorithm. The
second and third tables show the amount of effort involved in constructing the
GSS in terms of the number of times each node and edge is visited. We list
the number of nodes visited 0 times (those which are constructed but not visited
again) and those visited 1 and more times. For the C grammar these numbers are
the same for both algorithms because the ANSI-C grammar does not contain any
nullable non-terminals, but for our other examples we shall see that the number
of visits is lower for the GRMLR algorithm.

Size of the GSS

levels | state nodes | shift nodes | reduce nodes | edges

Algthmle | 4292 28323 4496 23962 56935
GRMLR | 4292 28323 4496 23962 56935
Node visit counts
visits 0 1 2 3 4 5 6 718 9|10
no. nodes

Algthmle | 24112 | 30026 | 606 | 266 | 126 | 128 | 171 | 90 | 32 | 98 | 56
no. nodes
GRMLR | 24112 | 30026 | 606 | 266 | 126 | 128 | 171 | 90 | 32 | 98 | 56

visits 11 (1213 (14| 15|16 |17 |18 | 19 | 20 |21 | 22 | 23
no. nodes
Algthmle | 56 |40 | 34| 3 | 13 |36 | 41 | 89 | 234 | 170 | 61 | 199 | 40
no. nodes
GRMLR |56 |40 (34| 3 | 13|36 |41 |89 |234 170 |61 | 199 | 40

visits 24 |25 12627128 1293113213334 |35|361|42 |44
no. nodes
Algthmle |24 | 1 | 1 |9 |8 |3 |1 |1 |1 |1]1]1]2]1
no. nodes
GRMLR |24 1|1 |9 (8|3 |11 |1|1]1]1]2]|1

Edge visit counts

visits 0 1 2
no. edges Algthmle | 383 | 55987 | 566
no. edges GRMLR | 383 | 55987 | 566
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Experiment 2: Pascal

Aim: Parse the source code for the str21 string preprocessor [Joh91] using the
ISO-standard Pascal grammar. The grammar is modified to allow some Borland
Turbo-Pascal extensions, and converted from EBNF to BNF using the ebnf2bnf
tool which is part of the gtb toolset.

Preparation:

1. Convert pascal.bnf from the RDP v1.5 distribution to BNF using the ebnf2bnf
tool.

ebnf2bnf pascal.bnf -opascal.gtb
2. Remove empty production comment ::= . from pascal.gtb.

3. Produce ‘lexicalised’ source by running the RDP Pascal syntax checker with
-L option. Note that this step removes comments.

pascal -L str2il.pas >str2l.str

leaving 267 lines, 1829 tokens average of 6.85 tokens per line.

4. Create P_tomita.gthb and P_null.gtb each with ten calls to the tomita_1 and
tomita_1_nullable_accepts parsers respectively.

Experimental runs:

gtb -T70000 P_tomita.gtb
1r(1) parse table requires 258075 cells: 6 cells have conflicts

gtb -T70000 P_null.gtb
1r(1) parse table requires 258075 cells: 1123 cells have conflicts

The run times are 0.39s in each case since the GSS is not large enough to trigger
non-linearity in the memory allocation system.

Size of the GSS

levels | state nodes | shift nodes | reduce nodes | edges

Algthmle | 1830 9171 1861 7373 18469
GRMLR | 1830 9171 1861 7373 18469
Node visit counts

visits 0 1 2 3 4 516 7 8 9
no. nodes
Algthmle | 4834 | 12134 | 455 | 278 | 188 | 64 | 68 | 195 | 149 | 30
no. nodes

GRMLR | 9538 | 7468 | 418 | 277 | 188 | 64 | 69 | 194 | 149 | 30

visits 10 {13 (14 | 15|20 |24 | 25|26 | 27 | total
no. nodes
Algthmle | 1 21 2 1 210 1 0 2 | 18383

no. nodes
GRMLR 1 21 2 1 2 1 0 1 1 | 13637
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Edge visit counts

visits 0 1 2 41314
no. edges Algthmle | 219 | 18169 | 76 |2 | 2 | 2
no. edges GRMLR | 4959 | 13435 |70 | 2| 2 | 2

Note the increase in conflicts as a result of adding right-nullable accept states.
It turns out that the Pascal grammar has many more right-nullable rules than
the C grammar. These rules exist because it is legal to have declarations which
can optionally be followed by an assignment, const declarations which are only
optionally followed by an actual declaration, etc. These do not generate right-
nullable rules in the C grammar because in C the semi-colon is a statement
terminator and thus is included at the end of such rules, while in Pascal semi-
colon is a statement separator, so it is included higher up in the grammar.

The GRMLR algorithm displays 13637 node visits compared to the 18383
node visits for Algorithm le.

Experiment 3: A right nullable grammar

Aim: To compare the Algorithm le and GRMLR algorithm generated graph
structured stacks on a grammar with a large proportion of ambiguity and right
nullability. Tests run on strings of lengths 1 to 4.

S = aAAA|e
A = ale

mput strings : a, aa, aaa, aqoq
gtb -T70000 P_tomita.gtb
1r(1) parse table requires 56 cells: 2 cells have conflicts

gtb -T70000 P_null.gtb
1r(1) parse table requires 56 cells: 6 cells have conflicts

Size of the GSS

string | levels | state nodes | shift nodes | reduce nodes | edges
Algthmle a 2 6 1 4 10
GRMLR a 2 6 1 4 10
Algthmle aaq 3 10 3 8 23
GRMLR aa 3 10 3 8 23
Algthmle | aaa 4 13 5 9 29
GRMLR | aaa 4 13 5 9 29
Algthmle | acaa 5 14 6 8 29
GRMLR | aaca 5 14 6 8 29
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Node visit counts

a aa aaa aaaq
visits 0110123410 |1 ]2|3|4}0|1]2
no. nodes
Algthmle | 3 |8 || 5|10 (2|3 110|103 |3 |1(16|9]|3
no. nodes
GRMLR [9 (2|9 6 (2|3 |1}|12| 8 3|3 |1]16]|9]3

Edge visit counts

aa aaa aaaq
101 {2(3|0] 1213 0]1
211712 12(6[19]2|2] 14|15
2161322 8|17|2]|2] 14|15

visits
no. edges Algthmle
no. edges GRMLR

(o) Wil el v

Note, there is no ambiguity for the string of length 4, the number of node visits
has significantly reduced and the two algorithms perform the same number of
visits. For the other three strings the total number of (non-zero) node visits is
less for the GRMLR algorithm than for Algorithm le.

Experiment 4: A right recursive grammar

Aim: To compare the Algorithm le generated and GRMLR algorithm generated
graph structured stacks on a grammar with hidden right recursion and a high
proportion of ambiguity. Tests run on strings of lengths 1 to 8.

S = aSAAA|e€
A = ale

mput strings : a, aa, ..., 4QGAAQGA

gtb -T70000 P_tomita.gtb
1r(1) parse table requires 98 cells: 7 cells have conflicts

gtb -T70000 P_null.gtb
1r(1) parse table requires 98 cells: 16 cells have conflicts

For this example, for each input string we shall just give the sizes of the GSS’s,
to show that they are identical for both algorithms, and the total numbers of
edge visits, to show that these are lower for the GRMLR algorithm than for
Algorithm le.
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Size of the GSS

string | levels | state nodes | shift nodes | reduce nodes | edges
Algthmle a 2 7 1 5 12
GRMLR a 2 7 1 5 12
Algthmle a’ 3 17 4 15 39
GRMLR a’ 3 17 4 15 39
Algthmle | @ 4 27 7 28 75
GRMLR a’ 4 27 7 28 75
Algthmle at 5 37 10 42 113
GRMLR | 5 37 10 42 113
Algthmle | a® 6 47 13 57 153
GRMLR | o’ 6 47 13 57 153
Algthmle a® 7 57 16 73 195
GRMLR a® 7 57 16 73 195
Algthmle | o 8 67 19 90 239
GRMLR | o' 8 67 19 90 239
Algthmle a® 9 77 22 108 285
GRMLR a® 9 77 22 108 285
Node visit counts
a|a?| a® | a* | @ | a® | a" | a®
total node visits
Algthmle 10 | 43 | 103 | 181 | 287 | 425 | 595 | 797
total node visits
GRMLR 2 35| 91 | 169 | 275 | 413 | 583 | 785

Experiment 5: A grammar on which Algorithm le may break

Aim: To construct a non-hidden-right-recursive grammar on which Algorithm 1e
incorrectly rejects some strings if the frontier nodes are processed in a certain
order, and to show that the GRMLR algorithm correctly accepts such strings.

S == aDad | BDab

D == aAB . o

A = aBB|e mput string : aaab
B = ¢

gtb -T70000 P_tomita.gtb
1r(1) parse table requires 176 cells: 2 cells have conflicts

Tomita 1 parse : ’a a a b’
Reject

gtb -T70000 P_null.gtb
1r(1) parse table requires 176 cells: 5 cells have conflicts
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Tomita 1 parse with nullable accepts: ’a a a b’
Accept

In this example, Algorithm le rejects the input string aaab, whereas it is accepted
by the GRMLR algorithm. For completeness we have given the statistics on the
sizes of the GSS and the number of node visits, but of course the numbers for
the Algorithm le generated GSS are not particularly interesting because it does
not complete the parse.

Size of the GSS

levels | state nodes | shift nodes | reduce nodes | edges
Algthmle 4 17 7 10 34
GRMLR 5 21 9 12 42

Node visit counts

visits 0 1|21 3| total
no. nodes
Algthmle | 17 |16 |1 | 0| 18
no. nodes
GRMLR |28 |11 |2 |1 18

Note that the node numbers in the Algorithm le GSS are lower than for the
GRMLR algorithm in this case because Algorithm le does complete the GSS
construction.

Experiment 6: A grammar on which Algorithm le always breaks

Aim: To construct a grammar on which Algorithm le incorrectly rejects some
strings no matter what order the frontier nodes are processed in, and to show
that the GRMLR algorithm correctly accepts such strings.

S = DA
A = aAB e mput string : baa
B = ¢

gtb -T70000 P_tomita.gtb
1r(1) parse table requires 63 cells: O cells have conflicts

Tomita 1 parse : ’b a a’
Reject

gtb -T70000 P_null.gtb
1r(1) parse table requires 63 cells: 3 cells have conflicts

Tomita 1 parse with nullable accepts: ’b a a’
Accept

Again in this example, Algorithm le rejects the input string baa, whereas it is
accepted by the GRMLR algorithm.
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Size of the GSS

levels | state nodes | shift nodes | reduce nodes | edges

Algthmle 4 6 3 3 12

GRMLR 4 8 3 5 16

Node visit counts

visits 011 2] total
no. nodes
Algthmle | 6 | 6 | 0 6
no. nodes
GRMLR |86 |2 10
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